
www.manaraa.com

University of Iowa University of Iowa

Iowa Research Online Iowa Research Online

Theses and Dissertations

Spring 2013

Graph-theoretic studies of combinatorial optimization problems Graph-theoretic studies of combinatorial optimization problems

Seyed Mohammad S. Mirghorbani Nokandeh
University of Iowa

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Industrial Engineering Commons

Copyright 2013 Seyed Mohammad Shahabeddin Mirghorbani Nokandeh

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/4698

Recommended Citation Recommended Citation
Mirghorbani Nokandeh, Seyed Mohammad S.. "Graph-theoretic studies of combinatorial optimization
problems." PhD (Doctor of Philosophy) thesis, University of Iowa, 2013.
https://doi.org/10.17077/etd.kmkgegg8

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Industrial Engineering Commons

https://ir.uiowa.edu/
https://ir.uiowa.edu/etd
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F4698&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=ir.uiowa.edu%2Fetd%2F4698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/etd.kmkgegg8
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F4698&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=ir.uiowa.edu%2Fetd%2F4698&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

GRAPH-THEORETIC STUDIES OF COMBINATORIAL OPTIMIZATION

PROBLEMS

by

Seyed Mohammad S. Mirghorbani Nokandeh

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Industrial Engineering
in the Graduate College of

The University of Iowa

May 2013

Thesis Supervisor: Prof. Pavlo Krokhmal

www.manaraa.com

1

ABSTRACT

Leonhard Euler introduced the concept of Graph Theory in his paper about the

seven bridges of Konigsberg published in 1736. It is the study of pair-wise relation-

ships between objects. Each object is represented using a vertex, and in case of a

relationship between a pair of vertices, they will be connected using an edge.

In this dissertation, graph theory is used to study several important combinato-

rial optimization problems. In chapter 2, we study the multi-dimensional assignment

problem using its underlying hypergraphs. It will be shown how the MAP can be rep-

resented by a k-partite graph and how any solution to MAP is associated to a k-clique

in the respective k-partite graph. Two heuristics are proposed to solve the MAP and

computational studies are performed to compare the performance of the proposed

methods with exact solutions. On the heels of chapter 2, a new branch-and-bound

method is proposed to solve the problem of finding all k-cliques in a k-partite graph

in chapter 3. The new method utilizes bitsets as the datastructure to represent graph

data. A new pruning method is introduced in BitCLQ, and CPU instructions are

used to improve the performance of the branch-and-bound method. BitCLQ gains

up to 300% speed up over existing methods. In chapter 4, two new heuristics to

solve decomposable cost MAP’s are proposed. The proposed heuristic are based on

the partitioning of the underlying graph representing the MAP. In the first heuristic

method, MAP’s are partitioned into several smaller MAP’s with the same dimensial-

www.manaraa.com

2

ity and smaller cardinality. The second heuristic works in the same fashion. But

instead of partitioning the graph along the elements, graphs are divided into smaller

graphs with the same cardinality but smaller dimensionality. The heuristics are then

used in exact branch and bound methods and numerical comparison of the resulting

method is provided. Maximum Clique problem entails finding the size of the largest

clique contained in a graph. General branch-and-bound methods to solve MCQ use

graph coloring to find an upper bound on the size of the maximum clique. In chapter

5, a branch and bound algorithm is proposed for the maximum clique problem. that

is based on the method of 5. Chapter 6 contains an application of a graph theory

in solving a risk management problem. The mixed-integer mathematical model to

formulate a risk-based network is provided. It will be shown that an optimal so-

lution of the model is a maximal clique in the underlying graph representing the

network.

Abstract Approved:

Thesis Supervisor

Title and Department

Date

www.manaraa.com

GRAPH-THEORETIC STUDIES OF COMBINATORIAL OPTIMIZATION

PROBLEMS

by

Seyed Mohammad S. Mirghorbani Nokandeh

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Industrial Engineering
in the Graduate College of

The University of Iowa

May 2013

Thesis Supervisor: Prof. Pavlo Krokhmal

www.manaraa.com

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Seyed Mohammad S. Mirghorbani Nokandeh

has been approved by the Examining Committee for the
thesis requirement for the Doctor of Philosophy degree
in Industrial Engineering at the May 2013 graduation.

Thesis Committee:

Pavlo Krokhmal, Thesis Supervisor

Mona Garvin

Andrew Kusiak

Yong Chen

Geb Thomas

www.manaraa.com

ABSTRACT

Leonhard Euler introduced the concept of Graph Theory in his paper about the

seven bridges of Konigsberg published in 1736. It is the study of pair-wise relation-

ships between objects. Each object is represented using a vertex, and in case of a

relationship between a pair of vertices, they will be connected using an edge.

In this dissertation, graph theory is used to study several important combinato-

rial optimization problems. In chapter 2, we study the multi-dimensional assignment

problem using its underlying hypergraphs. It will be shown how the MAP can be rep-

resented by a k-partite graph and how any solution to MAP is associated to a k-clique

in the respective k-partite graph. Two heuristics are proposed to solve the MAP and

computational studies are performed to compare the performance of the proposed

methods with exact solutions. On the heels of chapter 2, a new branch-and-bound

method is proposed to solve the problem of finding all k-cliques in a k-partite graph

in chapter 3. The new method utilizes bitsets as the datastructure to represent graph

data. A new pruning method is introduced in BitCLQ, and CPU instructions are

used to improve the performance of the branch-and-bound method. BitCLQ gains

up to 300% speed up over existing methods. In chapter 4, two new heuristics to

solve decomposable cost MAP’s are proposed. The proposed heuristic are based on

the partitioning of the underlying graph representing the MAP. In the first heuristic

method, MAP’s are partitioned into several smaller MAP’s with the same dimensial-

ii

www.manaraa.com

ity and smaller cardinality. The second heuristic works in the same fashion. But

instead of partitioning the graph along the elements, graphs are divided into smaller

graphs with the same cardinality but smaller dimensionality. The heuristics are then

used in exact branch and bound methods and numerical comparison of the resulting

method is provided. Maximum Clique problem entails finding the size of the largest

clique contained in a graph. General branch-and-bound methods to solve MCQ use

graph coloring to find an upper bound on the size of the maximum clique. In chapter

5, a branch and bound algorithm is proposed for the maximum clique problem. that

is based on the method of 5. Chapter 6 contains an application of a graph theory

in solving a risk management problem. The mixed-integer mathematical model to

formulate a risk-based network is provided. It will be shown that an optimal so-

lution of the model is a maximal clique in the underlying graph representing the

network.

iii

www.manaraa.com

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Optimization Problems . 1
1.2 Assignment Problems . 2

1.2.1 Multidimensional Assignment Problem 3
1.2.2 Quadratic Assignment Problems 4
1.2.3 Bottleneck Assignment Problems 5

1.2.3.1 Linear Bottleneck Assignment Problem 5
1.2.3.2 Quadratic Bottleneck Assignment Problem . . . 5

1.2.4 Properties of the optimal random assignments problems . 6
1.3 Maximum Clique Problem . 6

1.3.1 Definitions . 7
1.3.2 Formulations . 9

2 COMPUTATIONAL STUDIES OF RANDOMIZED MULTIDIMEN-
SIONAL ASSIGNMENT PROBLEMS 12

2.1 Introduction . 12
2.2 High-quality Solution Sets in Randomized Multidimensional As-

signment Problems . 18
2.2.1 Random Linear MAPs of Large Cardinality 19
2.2.2 Random MAPs of Large Dimensionality 24

2.3 Numerical Results . 26
2.3.1 Finding n-Cliques in n-Partite Graphs 27
2.3.2 Random Linear MAPs of Large Cardinality 30
2.3.3 Random MAPs of Large Dimensionality 37

3 ON FINDING K-CLIQUES IN K-PARTITE GRAPHS 41

3.1 Introduction . 41
3.2 A bitwise algorithm for finding k-cliques in a k-partite graph . . 45

3.2.1 Bitsets . 45
3.2.2 BitCLQ . 47

iv

www.manaraa.com

3.2.3 Example . 49
3.3 Numerical Results . 51

4 GRAPH PARTITIONING FOR THE DECOMPOSABLE COST MUL-
TIDIMENSIONAL ASSIGNMENT PROBLEM 56

4.1 introduction . 56
4.2 Element Partition . 58

4.2.1 Two disjoint element partition 58
4.2.2 Element augmentation . 60

4.3 Dimension Partition . 61
4.3.1 Two Disjoint dimension partition 62
4.3.2 Dimension Augmentation 63

4.4 Numerical results . 65

5 A BIT PARALLEL MAXIMUM CLIQUE ALGORITHM BASED ON
MAXSAT . 67

5.1 introduction . 67
5.2 BitMSClique . 83
5.3 Experimental results . 88

6 RISK-AVERSE MAXIMUM CLIQUE PROBLEM 89

6.1 Introduction and motivation . 89
6.2 Risk measures in stochastic programming 92
6.3 Risk-averse maximum clique problems 96

6.3.1 Risk-averse maximum clique problem with isolated risk ex-
posures . 98

6.4 A combinatorial approach to solve the maximum clique problem
with isolated risk exposures . 101

6.5 Numerical experiments . 103

7 CONCLUSIONS . 108

REFERENCES . 110

v

www.manaraa.com

LIST OF TABLES

Table

2.1 Comparison of the computational time and cost for the optimum clique
and the first clique found in G∗(α) and G∗(2α) in random MAPs with
linear sum objective functions for instances in group (i). 33

2.2 Comparison of the computational time and cost for the optimum clique
and the first clique found in G∗(α) and G∗(2α) in random MAPs with
linear bottleneck objective functions for instances in group (i). 33

2.3 Comparison of the computational time and cost for the first clique found
in G∗(α) and G∗(2α) in random MAPs with linear sum objective functions
for instances in group (ii). 35

2.4 Comparison of the computational time and cost for the first clique found
in G∗(α) and G∗(2α) in random MAPs with linear bottleneck objective
functions for instances in group (ii). 35

2.5 Computational time and cost for the first clique found in G∗(2α) in random
MAPs with linear sum objective functions for instances in group (iii). . . 36

2.6 Computational time and cost for the first clique found in G∗(2α) in random
MAPs with linear bottleneck objective functions for instances in group (iii). 37

3.1 Average computational time (in seconds) to find all the k-cliques (#CLQ)
contained in randomly generated k-partite graphs. 53

3.2 Average number of k-cliques found in randomly generated instances of
k-partite graphs after 200 seconds. 54

3.3 Average computational time (in seconds) needed to find the first n-clique
in an n-partite graph corresponding to a randomized instance of the Mul-
tidimensional Assignment Problem with d dimensions and n elements per
dimension. 55

4.1 Computational result and obtained cost for the exact and heuristic meth-
ods for MAP . 66

5.1 Time spent to find the maximum clique in random graphs of different size 88

vi

www.manaraa.com

6.1 Average optimal clique sizes and computation times in seconds obtained
by RAMCQ and CPLEX . 107

vii

www.manaraa.com

LIST OF FIGURES

Figure

2.1 The underlying bi-partite graph for an assignment problem with n = 4 . 13

2.2 A perfect matching in a 3-partite 3-uniform hypergraph. 14

2.3 The index graph G∗ of the hypergraph Hd|n shown in Figure 2.2. The
vertices of G∗ shaded in grey represent a clique (or, equivalently, a perfect
matching on Hd|n). 20

2.4 Behaviour of the solutions obtained from the heuristics: solution costs (a)
and computational time (b) in random MAPs with linear sum and linear
bottleneck objective functions for instances in group (i). 32

2.5 Bahaviour of the solution from the heuristic: comparison of the cost (a)
and computational time (b) for MAPs with linear sum and linear bottle-
neck objective functions for group (ii) and (iii). 38

2.6 Comparison of the cost obtained from the heuristic method with the opti-
mum cost in MAPs with linear sum and linear bottleneck objective func-
tions with (a) n = 2, (b) n = 3, (c) n = 4, and (d) n = 5 39

2.7 Comparison of the computational time in logarithmic scale needed for the
optimal method and the heuristic method in MAPs with linear sum and
linear bottleneck objective functions with (a) n = 2, (b) n = 3, (c) n = 4,
and (d) n = 5 . 40

3.1 Pseudo-code for BitCLQ . 50

3.2 A 3-partite graph and its adjacency matrix. 52

4.1 Partitioning of an MAP with d = 6 and n = 6: (a) A complete 6-partite
graph MAP(6,6), (b) partitioning of the graph in two MAP(6,3) instances
(c) 6 distinct cliques shown in each partitioning 59

4.2 The pseudo-code for the element augmentation heuristic 61

viii

www.manaraa.com

4.3 Dimension Partitioning of an MAP with d = 6 and n = 6: (a) The
dimension partitioning of an MAP(6,6) (b) The disjoint cliques in each of
the partitions. 63

4.4 The pseudo-code for the dimension augmentation method 64

5.1 A very basic maximum clique algorithm 70

5.2 MCQ algorithm . 71

5.3 An imperfect graph with χ(G) = 3 and ω(G) = 2 75

6.1 Pseudo-code for RAMCQ . 104

ix

www.manaraa.com

1

CHAPTER 1
INTRODUCTION

1.1 Optimization Problems

Many real life problems entail determining the best configuration for a set of

decision variables to achieve an optimum value for some criteria. Over the past

decade, different types of such problems have emerged and corresponding techniques

for solving them are developed. Many optimization problems are concerned with

optimizing a function f over a finite set X of d-tuples of integers. If f is linear and X

is defined by a finite number of linear inequality constraints with integer coefficients,

the problem in hand is called annnnn integer programming.

Combinatorial optimization is a subset of discrete mathematics with its roots in

combinatorics, operations research, and theoretical computer science. The propelling

force behind the ongoing research in this field is that many practical problems can be

formulated as combinatorial optimization problems. Most combinatorial optimiza-

tion problems deal with problems that can be formulated as integer programs, but

have an underlying combinatorial structure that makes it possible to develop special

algorithms that are expected to be more efficient than general integer programming

methods. Many of these problems can be represented on a directed or undirected

graph G(V,E), and a function f defined on the finite node set V or the edge set E

or the union of the vertex set and the edge set, which takes real values. Some of the

most important problems studies in this area include: the vehicle routing problem,

www.manaraa.com

2

traveling salesman problem, minimum spanning tree, matching problem, scheduling

problem, n-queen problem, assignment problem and weapon-target assignment prob-

lem.

In this dissertation we will study two important combinatorial optimization prob-

lems, namely, the multi-dimensional assignment problem, and the maximum clique

problem. The multi-dimensional assignment problems are an extension of the two-

dimensional assignment problems. In the first part of this chapter, we will introduce

several types of assignment problems and some of their properties. In the second part

of the chapter, the maximum clique problem, related definitions, and the formulation

of the problem will be provided.

1.2 Assignment Problems

The simplest form of assignment problems is the linear assignment problem

(LAP). LAP is one of the fundamental models in operations research, computer sci-

ence, and discrete mathematics. In its most familiar interpretation, it answers the

question of finding an assignment of n workers to n jobs that has the lowest total cost,

if the cost of assigning worker i to task j equals cij . Apart from the straightforward

applications, such as personnel assignment problems, the LAP frequently arises as a

part of other optimization problems, such as quadratic assignment problem, multidi-

mensional assignment problem, traveling salesman problem, etc. Other applications

of the LAP, including earth-satellite systems with TDMA protocol, and tracking ob-

jects in space are considered in [14] and [12]; for a more comprehensive discussion of

www.manaraa.com

3

the applications of the LAP, refer to, e.g., [16].

A mathematical programming formulation of the LAP reads as

L∗n = min
xij∈{0,1}

n∑

i=1

n∑

j=1

aijxij

s. t.
n∑

i=1

xij = 1, j = 1, . . . , n,

n∑

j=1

xij = 1, i = 1, . . . , n,

(1.1)

where it is well known that the integrality of variables xij can be relaxed: 0 ≤ xij ≤ 1,

leading to an integer programming or linear programming formulation of LAP. In the

graph theoretical setting, the optimal solution to LAP corresponds to the minimum-

cost perfect matching1 in an edge weighted bipartite graph. An LAP can be solved

in polynomial time; the best worst-case complexity for LAP is O(n3), obtained from

the primal-dual Hungarian method [42].

1.2.1 Multidimensional Assignment Problem

The multidimensional assignment problem (MAP) is a higher dimensional version

of the (two-dimensional) LAP. For example, a 3-dimensional assignment problem

can be interpreted as finding an optimal assignment of n jobs to n workers on n

machines. In general, given d sets each of n elements, the objective is to find an

optimal assignment of the elements of each set of n d-tuples, such that the total cost

of the d-tuples is minimized. The axial d-dimensional assignment problem can be

formulated as an integer programming problem with nd binary variables and n × d

1A matching in a graph is a set of edges without common vertices. A perfect matching
is a matching that covers all the vertices in a graph.

www.manaraa.com

4

constraints. Multi-dimensional assignment problems are furthered studied in chapters

2 and 4.

1.2.2 Quadratic Assignment Problems

Let A = (aij) and B = (bij) be two square n× n matrices. Then the quadratic

assignment problem (QAP) as introduced by Koopmans and Beckmann [37] can be

formulated as:

Qn = min
xij∈{0,1}

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

aijbklxikxjl

s. t.
n∑

i=1

xij = 1, j = 1, . . . , n,

n∑

j=1

xij = 1, i = 1, . . . , n,

(1.2)

QAP was first formulated in the context of facility layout, with A being the

matrix of distances between sites, and B the flow of goods. Of a comprehensive

survey of the applications of QAP, please refer to [13, 54, 55, 15]. QAP is known to

be NP-hard and non-approximable [64]. Formally, an approximation algorithm for a

minimization problem is called ε-approximate2 if for every input, the algorithm finds

a solution whose objective function is at most ε times the optimum. A problem is

called non-approximable if it is proved that unless P = NP , there is no ε-approximate

algorithm to solve the problem. For an overview of the recent advances in exact and

heuristic algorithms for the QAP, please refer to [15, 3, 48].

2ε is called the performance ratio of the algorithm.

www.manaraa.com

5

1.2.3 Bottleneck Assignment Problems

The bottleneck assignment problems are closely related to the assignment prob-

lems with sum objective; if the latter minimize the total cost of all assignment, then

in the corresponding bottleneck problem, the cost of the most expensive assignment

is minimized.

1.2.3.1 Linear Bottleneck Assignment Problem

The linear bottleneck assignment problem, in the graph-theoric interpretation,

tries to find the perfect matching in the weighted bipartite graph that minimizes the

maximum weight of all matched edges. The mathematical formulation of the linear

bottleneck assignment problem reads as:

Zn = min
xij∈{0,1}

max
i,j

cijxikxjl

s. t.
n∑

i=1

xij = 1, j = 1, . . . , n,

n∑

j=1

xij = 1, i = 1, . . . , n,

(1.3)

For the applications of the bottleneck assignment problem, please refer to [25, 6,

17].

1.2.3.2 Quadratic Bottleneck Assignment Problem

First introduced by [68] in the context of backboard wiring problem, the quadratic

bottleneck assignment problem can be obtained by replacing the objective function

in (1.3) with:

www.manaraa.com

6

Zn = min
π∈Πn

max
i,j

ai,jbπ(i),π(j), (1.4)

This problem is proved to be NP-hard

1.2.4 Properties of the optimal random assignments problems

First attempts to compute the expected optimal value of random LAP’s (with

i.i.d cost coefficients, cij) were done in [43] and [21]. In[74] an upper bound for the

expected cost of (1.1) when the cost coefficients cij are iid uniform [0,1] random

variables is established:

E[Ln] ≤ 3.

This result was improved in [34] utilizing LP duality: E[Ln] ≤2. Later on, a

tighter upper bound of 1.94 was established in [20] via application of an assignment

algorithm to large cost matrices whose entries are iid exponential with mean 1.

With an assumption of iid uniform [0,1] assignment costs, the first lower bound

on the value of an optimal assignment in (1.1) was developed in [44] using the dual

LP formulation and evaluating the dual objective after row and column reductions

due to the Hungarian method: E[Ln] ≥ 1.368. This result was later improved by the

dual heuristic proposed in [52] showing that E[Ln] ≥ 1.51.

1.3 Maximum Clique Problem

One of the classical problems in the combinatorial optimization domain, the

maximum clique problem, has important applications in different areas such as infor-

www.manaraa.com

7

mation retrieval, experimental design, signal transmission, and computer vision. In

the remainder of this chapter, we provide the formulations and priliminary definitions

for the maximum clique problem.

1.3.1 Definitions

Given an undirected graph G(V,E), where V = {1, 2, . . . , n} is the vertex set

and E ⊆ V × V is the edge set of G, a clique is defined as a complete subgraph of

G; i.e. a set of nodes that are pair-wise adjacent. AG = (aij)(i,j)∈V×V , where aij = 1

if (vi, vj) ∈ E and aij = 0 if (vi, vj) /∈ E, is called the adjacency matrix of G. In case

of a weighted graph, a positive weight wi is associated with vertex i. Weights can be

associated to edges as well. The neighborhood of node vi, N(vi) is defined as the set

of nodes that are adjacent to it:

N(vi) = {vj|(vi, vj) ∈ E}.

The complement of graph G, denoted by G(V,E) is a graph with vertex set

V and the edge set E = {(vi, vj)|vi, vj ∈ V, vi 6= vj, and (vi, vj) 6= E}. For a

subgraph S ⊆ V , weigh of S is denoted by W (S) and is equal to
∑

i∈S

wi. Also

G(S) = (S,E ∩ (S × S)) is called the subgraph induced by S.

A graph G(V,E) is called complete if all its vertices are pair-wise adjacent. A

clique C is complete subgraph of G, i.e. G(C) is a complete graph. A clique is called

maximal if it is not a subset of another clique. The largest clique in a graph is called

the maximum clique. The size of the maximum clique in a graph is called the clique

www.manaraa.com

8

number of G and is denoted by ω(G).

The maximum clique problem seeks to find the clique number in a given graph.

The maximum weight clique problem seeks to find the cliques of maximum weight.

Consequently, the weighted clique number is the sum of the weights of the edges in

the maximum weight clique and is denoted by ω(G,w):

ω(G) = max{|S| : S is a clique in G}

ω(G,w) = max{W (S) : S is a clique in G}

An independent set, also known as stable set or vertex packing is a set of nodes

that are pair-wise non-adjacent. The maximum independent set problem seeks to find

the independent set of the maximum cardinality in a given graph, the size of which is

called the stability number of G and is denoted by α(G). Similarly to the maximum

weight clique problem, one can define the maximum weight independent set.

A vertex cover in graph G is a set of vertices such that every edge (vi, vj) ∈ E

has at least one neighbor in the subset. The minimum vertex cover problem seeks to

find a vertex cover of minimum cardinality.

It is easy to show that the following statements are equivalent concerning any

S ⊂ V [7]:

1. S is the vertex set of a maximum clique in G,

2. S is a maximum vertex packing in G,

3. V \ S is a minimum vertex cover in G

As a result, the following three problems are equivalent:

www.manaraa.com

9

1. Finding a maximum clique in G,

2. Finding a maximum vertex packing in G

3. Finding a minimum vertex cover in G.

They are also known to be NP -complete.

1.3.2 Formulations

The maximum clique problem has several formulations as an integer program-

ming problem or as a continuous nonconvex optimization problem. The simplest

formulation of the maximum clique problem is based on edge formulation:

ω(G) = max
n∑

i=1

wixi

s. t. xi + xj ≤ 1 ∀(i, j) ∈ E
xi ∈ {0, 1} i = 1, . . . , n,

(1.5)

The polyhedral properties of (1.5) is studied in [50] and [51]:

Theorem 1.3.1. Lex x be an optimum (0, 1
2
, 1)-valued solution to the linear relax-

ation of (1.5), and let P = {j|xj = 1}. Then there exists an optimum solution x∗ to

(1.5), such that x∗j = 1, ∀j ∈ P .

This theorem can be used in enumerative algorithms. However, in most cases,

few variables have integer values in an optimal solution to the linera relaxation of

(1.5) and the gap between the relaxation and the optimal solution of (1.5) is usually

too large.

An alternative formulation for the maximum clique problem can be made based

on the maximal independet sets contained in G:

www.manaraa.com

10

ω(G) = max
n∑

i=1

wixi

s. t.
∑

i∈S

xi ≤ 1 ∀S ∈ S

xi ∈ {0, 1} i = 1, . . . , n,

(1.6)

where S is the set of all maximal independent sets of G. Although the relaxation

to (1.6) produces a smaller gap compared to (1.5) with the optimal value, it has

exponential number of constraints. The relaxation to (1.6) is actually proved to be

NP -hard on general graphs. It can, however, be solved in polynomial time for perfect

graphs, and under such cases, the optimal solution takes integer values [28].

The following theorem shows a zero-one quadratic formulation of the maximum

clique problem:

Theorem 1.3.2. The maximum clique problem is equivalent to the following global

quadratic zero-one problem:

min f(x) = xTAx
s. t. x ∈ {0, 1}n where A = AG − I

(1.7)

If x∗ solves (1.7), then the set C = t(x∗) is a maximum clique of G with |C| =

−z = −f(x∗).

In theorem 1.3.2, t is a transformation from {0, 1}n to 2V :

t(x) = {i ∈ V : xi = 1},∀x ∈ {0, 1}n,

and I is an n× n identity matrix.

www.manaraa.com

11

For a complete survey on the maximum clique problem, formulations, exact and

heuristic methods, and application, the reader is referred to [10].

In this dissertation, two important combinatorial problems are studied: the

multi-dimensional assignment problem, and the maximum clique problem. In par-

ticular, in chapter 2, we propose two heuristics for the random multi-dimensional

assignment problem and illustrate that the solution obtained from the heuristics is

convergent to the optimal solution of the problem. Chapter 3 studies a particular

case of the maximum clique problem, enumerating the k-cliques, in k-partite graphs.

Chapter 5 explains a new method for the maximum clique problem in general graphs,

and finally chapter 4 describes a new heuristic based on graph partitioning for the

multi-dimensional assignment problem.

www.manaraa.com

12

CHAPTER 2
COMPUTATIONAL STUDIES OF RANDOMIZED

MULTIDIMENSIONAL ASSIGNMENT PROBLEMS

2.1 Introduction

In the simplest form of the assignment problem, two sets V and W with size

|V | = |W | = n are given. The goal is to find a permutation of the elements of W ,

π = (j1, j2, . . . , jn), where the ith element of V is assigned to the element ji = π(i)

from W in such a way that the cost function
∑n

i=1 aiπ(i) is minimized. Here, aij is the

cost of assigning element i of V to the element j of W . This problem is widely known

as the classical Linear Assignment Problem (LAP). The LAP can be represented

by a complete weighted bipartite graph G = (V,W ;E), with node sets V and W ,

where |V | = |W | = n and weight aij for the edge (vi, wj) ∈ E (Fig. 3.1), such that an

optimal solution for LAP corresponds to a minimum-weight matching in the bipartite

graph G. The LAP is well known to be polynomially solvable in O(n3) time using

the celebrated Hungarian method [42]. A mathematical programming formulation of

the LAP reads as

L∗n = min
xij∈{0,1}

n∑

i=1

n∑

j=1

aijxij

s. t.
n∑

i=1

xij = 1, j = 1, . . . , n,

n∑

j=1

xij = 1, i = 1, . . . , n,

(2.1)

www.manaraa.com

13

Figure 2.1: The underlying bi-partite graph for an assignment problem with n = 4

where it is well known that the integrality of variables xij can be relaxed: 0 ≤ xij ≤ 1.

The LAP also admits the following permutation based formulation:

min
π∈Π

n∑

i=1

aiπ(i), (2.2)

where Π is the set of all permutations of the set {1, . . . , n}.

Multidimensional extensions of the bipartite graph matching problems, such as

the LAP, Quadratic Assignment Problem (QAP), and so on, can be presented in the

framework of hypergraph matching problems.

A hypergraph H = (V , E), also called a set system, is a generalization of the graph

concept, where a hyperedge may connect two or more vertices from the set V :

E = {e ⊂ V
∣∣ |e| ≥ 2}, (2.3)

A hypergraph is called k-uniform if all its hyperedges have the size k:

E = {e ∈ V
∣∣ |e| = k}.

www.manaraa.com

14

Figure 2.2: A perfect matching in a 3-partite 3-uniform hypergraph.

Observe that a regular graph is a 2-uniform hypergraph. A subset V ′ ⊂ V of

vertices is called independent if the vertices in V ′ do not share any edges; if V can be

partitioned into d independent subsets, V = ∪dk=1Vk, then V is called d-partite.

Let Hd|n be a complete d-partite n-uniform hypergraph, where each independent

set Vk has n vertices. Then
∣∣V(Hd|n)

∣∣ = n × d, and the total number of hyperedges

is equal to nd. A perfect matching µ on Hd|n is formed by a set of n hyperedges that

do not share any vertices:

µ =
{
{e1, . . . , en}

∣∣ ei ∈ E , ei ∩ ej = ∅, i, j ∈ {1, . . . , n}, i 6= j
}
.

Figure 2.2 shows a perfect matching in a 3-partite 3-uniform hypergraph.

If the cost of hypergraph matching µ is given by function Φ(µ), the general

combinatorial optimization problem on hypergraph matchings can be stated as

min
{

Φ(µ)
∣∣∣ µ ∈M(Hd|n)

}
, (2.4)

where M(Hd|n) is the set of all perfect matchings on Hd|n.

www.manaraa.com

15

The mathematical programming formulation of the hypergraph matching prob-

lem (2.4) is also generally known as multidimensional assignment problem (MAP).

To derive the mathematical programming formulation of (2.4), note that according

to the definition of Hd|n, each of its hyperedges contains exactly one vertex from

each of the independent sets V1, . . . ,Vd and therefore can be represented as a vector

(i1, . . . , id) ∈ {1, . . . , n}d, where, with abuse of notation, the set {1, . . . , n} is used

to label the nodes of each independent subset Vk. Then, the set M(Hd|n) of perfect

matchings on Hd|n can be represented in a mathematical programming form as

M(Hd|n) =

{
x ∈ {0, 1}nd

∣∣∣∣∣
∑

ik∈{1,...,n}
k∈{1,...,d}\{r}

xi1···id = 1, ir ∈ {1, . . . , n}, r ∈ {1, . . . , d}
}
,

(2.5)

where xi1··· id = 1 if the hyperedge (i1, . . . , id) is included in the matching, and xi1··· id =

0 otherwise.

Depending on the particular form of Φ, a number of combinatorial optimization

problems on hypergraph matchings can be formulated. For instance, if the cost

function Φ in (2.4) is defined as a linear form over the variables xi1··· id ,

Φ(x) =
n∑

i1=1

· · ·
n∑

id=1

φi1··· id xi1··· id , (2.6)

www.manaraa.com

16

one obtains the so-called linear multidimensional assignment problem (LMAP):

Z∗d,n = min
x∈{0,1}nd

n∑

i1=1

· · ·
n∑

id=1

φi1···idxi1···id

s. t.
n∑

i2=1

· · ·
n∑

id=1

xi1···id = 1, i1 = 1, . . . , n,

n∑

i1=1

· · ·
n∑

ik−1=1

n∑

ik+1=1

· · ·
n∑

id=1

xi1···id = 1, ik = 1, . . . , n,

k = 2, . . . , d− 1,
n∑

i1=1

· · ·
n∑

id−1=1

xi1···id = 1, id = 1, . . . , n.

(2.7)

Clearly, a special case of (2.7) with d = 2 is nothing else but the classical LAP (2.1).

The dimensionality parameter d in (2.7) stands for the number of “dimensions” of

the problem, or sets of elements that need to be assigned to each other, while the

parameter n is known as the cardinality parameter.

If the cost of the matching on hypergraph Hd|n is defined as the cost of the most

expensive hyperedge in the matching, i.e., the cost function Φ(x) has the form

Φ(x) = max
i1,...,id∈{1,...,n}

φi1··· id xi1··· id ,

we obtain the multidimensional assignment problem with bottleneck objective (BMAP):

W ∗
d,n = min

x∈{0,1}nd
max

i1,...,id∈{1,...,n}
φi1··· id xi1··· id

s. t.
n∑

i2=1

· · ·
n∑

id=1

xi1···id = 1, i1 = 1, . . . , n,

n∑

i1=1

· · ·
n∑

ik−1=1

n∑

ik+1=1

· · ·
n∑

id=1

xi1···id = 1, ik = 1, . . . , n,

k = 2, . . . , d− 1,
n∑

i1=1

· · ·
n∑

id−1=1

xi1···id = 1, id = 1, . . . , n.

(2.8)

Similarly, taking the hypergraph matching cost function Φ in (2.4) as a quadratic

www.manaraa.com

17

form over x ∈ {0, 1}nd
,

Φ(x) =
n∑

i1=1

· · ·
n∑

id=1

n∑
j1=1

· · ·
n∑

jd=1

φi1··· idj1···jd xi1··· id xj1··· jd , (2.9)

we arrive at the quadratic multidimensional assignment problem (QMAP), which

represents a higher-dimensional generalization of the classical QAP.

The LMAP was first introduced by Pierskalla [57], and has found applications

in the areas of data association, sensor fusion, multi-sensor multi-target tracking,

peer-to-peer refueling of space satellites, etc; for a detailed discussion of the applica-

tions of the LMAP, see, e.g., [15, 16]. In [8], a two step method based on bipartite

and multidimensional matching problem is proposed to solve the roots of a system

of polynomial equations that avoids possible degeneracies and multiple roots encoun-

tered in some conventional methods. MAP is used in the course timetabling problem,

where the goal is to assign students and teachers to classes and time slots [18]. In [1]

a composite neighborhood structure with a randomized iterative improvement algo-

rithm for the timetabling problem with a set of hard and soft constraints is proposed.

An application of MAP in the scheduling of sport competitions that take place in

different venues is studied in [72]. The characteristic of this study is that venues,

that can involve playing fields, courts, or drill stations, are considered as part of the

scheduling process. In [58] a Lagrangian relaxation based algorithms is proposed for

the multi-target/multi-sensor tracking problem, where multiple sensors are used to

identify targets and estimate their states. To accurately achieve this goal, the data

association problem which is an NP-hard problem should be solved to partition ob-

servations into tracks and false alarms. A general class of these data association prob-

www.manaraa.com

18

lems can be formulated as a multi-dimensional assignment problem with a Bayesian

estimation as the objective function. the optimal solution yields the maximum a

posteriori estimate. A special case of multiple-target tracking problem is studied in

[60] to track the flight paths of charged elementary particles near their primary point

of interaction. The 3-dimensional assignment problem is used in [22] to formulate a

peer-to-peer (P2P) satellite refueling problem. P2P strategy is an alternative to the

single vehicle refueling system where all satellites share the responsibility of refueling

each other on an equal footing.

The remainder of this chapter is organized as follows: In section 2.2, heuristic

methods to solve multi-dimensional assignment problems will be provided. Section

2.2.1 describes the method to solve MAPs with large cardinality. In section 2.2.2,

the heuristic method for MAPs with large dimensionality is explained. Section 2.3

contains the numerical results and comparison with exact methods, and finally in

section ??, conclusions and future extensions are provided.

2.2 High-quality Solution Sets in Randomized Multidimensional

Assignment Problems

In this section two methods will be described that can be used to obtain math-

ematically proven high-quality solutions for MAPs with large cardinality, or large

dimensionality. These methods utilize the concept of index graph of the underlying

hypergraph of the problem.

www.manaraa.com

19

2.2.1 Random Linear MAPs of Large Cardinality

In the case when the cost Φ of hypergraph matching is a linear function of

hyperedges’ costs, i.e., for MAPs with linear objectives, a useful tool for constructing

high quality solutions for instances with large cardinality (n � 1) is the so-called

index graph. The index graph is related to the concept of line graph, in that the

vertices of the index graph represent the hyperedges of the hypergraph.

Namely, by indexing each vertex of the index graph G∗ = (V∗, E∗) by (i1, . . . , id) ∈

{1, . . . , n}d, identically to the corresponding hyperedge of Hd|n, the set of vertices V∗

can be partitioned into n subsets V∗k , also called levels, which contain vertices whose

first index is equal to k:

V∗ =
n⋃

k=1

V∗k , V∗k = {(k, i2, . . . , id)
∣∣ i2, . . . , id ∈ {1, . . . , n}}.

For any two vertices i, j ∈ V∗, an edge (i, j) exists in G∗, (i, j) ∈ E∗, if and only if the

corresponding hyperedges of Hd|n do not have common nodes. In other words,

E∗ = {(i, j)
∣∣ i = (i1, . . . , id), j = (j1, . . . , id) : ik 6= jk, k = 1, . . . , n}.

Then, that it is easy to see that G∗ has the following properties.

Lemma 2.2.1. Consider a complete, d-partite, n-uniform hypergraph Hd|n = (V , E),

where |E| = nd, and V =
⋃d
k=1 Vk such that Vk ∩ Vl = ∅, k 6= l and |Vk| = n,

k = 1, . . . , d. Then, the index graph G∗ = (V∗, E∗) of Hd|n satisfies:

1. G∗ is n-partite, namely V∗ =
⋃n
k=1 V∗k , V∗i ∩ V∗j = ∅ for i 6= j, where each V∗k is

an independent set in V∗: for any i, j ∈ V∗k one has (i, j) /∈ E∗

2. |V∗k | = nd−1 for each k = 1, . . . , n

www.manaraa.com

20

Figure 2.3: The index graph G∗ of the hypergraph Hd|n shown in Figure 2.2. The

vertices of G∗ shaded in grey represent a clique (or, equivalently, a perfect matching

on Hd|n).

3. The set of perfect matchings in Hd|n is isomorphic to the set of n-cliques in G∗,

i.e., each perfect matching in Hd|n corresponds uniquely to a (maximum) clique

of size n in G∗.

Let us denote by G∗(αn) the induced subgraph of the index graph G∗ obtained

by randomly selecting αn vertices from each level V∗k of G∗, and also define N(αn) to

be the number of cliques in G∗(αn), then based on the following lemma [38] one can

select αn in such a way that G∗(αn) is expected to contain at least one n-clique:

Lemma 2.2.2. The subgraph G∗(αn) is expected to contain at least one n-clique, or

a perfect matching on Hd|n (i.e., E[N(αn)] ≥ 1) when αn is equal to

αn =

⌈
nd−1

n!
d−1
n

⌉
. (2.10)

In the case when the cost coefficients φi1···id of MAP with linear or bottleneck

objective are drawn independently from a given probability distribution, Lemma 2.2.2

can be used to construct high quality solutions. The approach is to create the sub-

graph G∗min(αn), also called the α-set, from the index graph G∗ of the MAP by selecting

www.manaraa.com

21

αn nodes with the smallest cost coefficients from each partition (level) of G∗. If the

costs of the hyperedges of Hd|n, or, equivalently, vertices of G∗, are identically and

independently distributed, the α-set is expected to contain at least one clique, which

represents a perfect matching in the hypergraph Hd|n. It should be noted that since

the α-set is created from the nodes with the smallest cost coefficients, if a clique exists

in the α-set, the resulting cost of the perfect matching is expected to be close to the

optimal solution of the MAP.

Importantly, when the cardinality n of the MAP increases, the size of the sub-

graph G∗(αn) or G∗min(αn) grows only as O(n), as evidenced by the following observa-

tion:

Lemma 2.2.3. If d is fixed and n → ∞, then αn monotonically approaches a finite

limit:

αn ↗ α := ded−1e as n↗∞. (2.11)

Corollary 2.2.4. In the case of randomized MAP of large enough cardinality n� 1

the subset G∗min expected to contain a high-quality feasible solution of the MAP can

simply be chosen as G∗min(α), where α is given by (2.11).

Observe that using the α-set G∗min(α) for construction of a low-cost feasible so-

lution to randomized MAP with linear or bottleneck objectives may prove to be a

challenging task, since it is equivalent to finding an n-clique in an n-partite graph;

moreover, the graph G∗min(α) is only expected to contain a single n-clique (feasible

www.manaraa.com

22

solution). The following variation of Lemma 2.2.2 allows for constructing a subgraph

of G∗ that contains exponentially many feasible solutions:

Lemma 2.2.5. Consider the index graph G∗ of the underlying hypergraph Hd|n of a

randomized MAP, and let

βn =

⌈
2
nd−1

n!
d−1
n

⌉
. (2.12)

Then, the subgraph G∗(βn) is expected to contain 2n n-cliques, or, equivalently, perfect

matching on Hd|n.

Proof. The statement of the lemma is easy to obtain by regarding the feasible solu-

tions of the MAP as paths that contain exactly one vertex in each of the n “levels”

V∗1 , . . . ,V∗n of the index graph G∗. Namely, let us call a path connecting the ver-

tices (1, i
(1)
2 , . . . , i

(1)
d) ∈ V∗1 , (2, i

(2)
2 , . . . , i

(2)
d) ∈ V∗2 , . . . , (n, i

(n)
2 , . . . , i

(n)
d) ∈ V∗n feasible if

{i(1)
k , i

(2)
k , . . . , i

(n)
k } is a permutation of the set {1, . . . , n} for every k = 2, . . . , d. Note

that from the definition of the index graph G∗ it follows that a path is feasible if and

only if the vertices it connects form an n-clique in G∗. Next, observe that a path in

G∗ chosen at random is feasible with the probability
(
n!
nn

)d−1
, since one can construct

nn(d−1) different (not necessarily feasible) paths in G∗. Then, if we randomly select

βn vertices from each set V∗k in such a way that out of the (βn)n paths spanned by

G∗(βn) at least 2n are feasible, the value of βn must satisfy:

(βn)n
(
n!

nn

)d−1

≥ 2n,

from which it follows immediately that βn must satisfy (2.12).

www.manaraa.com

23

Corollary 2.2.6. If d is fixed and n→∞, then βn monotonically approaches a finite

limit:

βn ↗ β := d2ed−1e as n↗∞.

Remark 2.2.7. Since the value of the parameter βn (2.12) is close to the double of

the parameter αn (2.10), the subgraph G∗min(βn), constructed from selecting βn nodes

with the smallest cost coefficients from each partition (level) of G∗ will be called the

“2α-set”, or G∗(2α).

Following [39], the costs of feasible solutions of randomized MAPs with linear

or bottleneck objectives that are contained in the α- or 2α-sets can be shown to

satisfy:

Lemma 2.2.8. Consider a randomized MAP with linear or bottleneck objectives,

whose cost coefficients are iid random variables from a continuous distribution F

with a finite left endpoint of the support, F−1(0) > −∞. Then, for a fixed d ≥ 3 and

large enough values of n, if the subset G∗min(α) (or, respectively, G∗min(β)) contains a

feasible solution of the MAP, the cost Zn of this solution satisfies

(n− 1)F−1(0) + F−1

(
1

nd−1

)
≤ Zn ≤ nF−1

(
3 lnn

nd−1

)
, n� 1, (2.13)

in the case of MAP with linear objective (2.7), while in the case of MAP with bottleneck

objective (2.8) the cost Wn of such a solution satisfies

F−1

(
1

nd−1

)
≤ Wn ≤ F−1

(
3 lnn

nd−1

)
, n� 1. (2.14)

www.manaraa.com

24

2.2.2 Random MAPs of Large Dimensionality

In cases where the cardinality of the MAP is fixed, and its dimensionality is

large, d� 1, the approach described in section 2.2.1 based on the construction of α-

or 2α-subset of the index graph G∗ of the MAP is not well suited, since in this case

the size of G∗(α) grows exponentially in d.

However, the index graph G∗ of the underlying hypergraph Hd|n of the MAP can

still be utilized to construct high-quality solutions of large-dimensionality randomized

MAPs.

Let us call two matchings µi = {(i(1)
1 , . . . , i

(1)
d), . . . , (i

(n)
1 , . . . , i

(n)
d)} and µj =

{(j(1)
1 , . . . , j

(1)
d), . . . , (j

(n)
1 , . . . , j

(n)
d)} on the hypergraph Hd|n disjoint if

(i
(k)
1 , . . . , i

(k)
d) 6= (j

(`)
1 , . . . , j

(`)
d) for all 1 ≤ k, ` ≤ n,

or, in other words, if µi and µj do not have any common hyperedges. It is easy to

see that if the cost coefficients of randomized MAPs are iid random variables, then

the costs of the feasible solutions corresponding to the disjoint matchings are also

independent and identically distributed.

Next, we show how the index graph G∗ of the MAP can be used to construct

exactly nd−1 disjoint solutions whose costs are iid random variables. First, recalling

the interpretation of feasible MAP solutions as paths in the index graph G∗, we ob-

serve that disjoint solutions of MAP, or, equivalently, disjoint matchings on Hd|n are

represented by disjoint paths in G∗ that do not have common vertices.

Note that since each level V∗k of G∗ contains exactly nd−1 vertices (see Lemma 2.2.1),

there may be no set of disjoint paths with more than nd−1 elements.

www.manaraa.com

25

On the other hand, recall that a (feasible) path G∗ can be described as a set of

n vectors

µ = {(i(1)
1 , . . . , i

(1)
d), . . . , (i

(n)
1 , . . . , i

(n)
d)},

such that {i(1)
k , . . . , i

(n)
k } is a permutation of the set {1, . . . , n} for each k = 1, . . . , d.

Then, for any given vertex v(1) = (1, i
(1)
2 , . . . , i

(1)
d) ∈ V∗1 , let us construct a feasible

path containing v(1) in the form

{(1, i(1)
2 , . . . , i

(1)
d), (2, i

(2)
2 , . . . , i

(2)
d), . . . , (n, i

(n)
2 · · · i(n)

d)},

where for k = 2, . . . , d and r = 2, . . . , n

i
(r)
k =

{
i
(r−1)
k + 1, if i

(r−1)
k = 1, . . . , n− 1,

1, if i
(r−1)
k = n.

(2.15)

In other words, {i(1)
k , . . . , i

(n)
k } is a forward cyclic permutation of the set {1, . . . , n} for

any k = 2, . . . , d. Applying (2.15) to each of the nd−1 vertices (1, i
(1)
2 , . . . , i

(1)
d) ∈ V∗1 , we

obtain nd−1 feasible paths (matchings on Hd|n) that are mutually disjoint, since (2.15)

defines a bijective mapping between any vertex (hyperedge) (k, i
(k)
2 , . . . , i

(k)
d) from the

set V∗k , k = 2, . . . , n, and the corresponding vertex (hyperedge) v(1) ∈ V∗1 .

Then, if hyperedge costs φi1··· id in the linear or bottleneck MAPs (2.7) and

(2.8) are stochastically independent, the costs Φ(µ1), . . . ,Φ(µnd−1) of the nd−1 disjoint

matchings µ1, . . . , µnd−1 defined by (2.15) are also independent, as they do not contain

any common elements φi1··· id . Given that the optimal solution cost Z∗d,n (respectively,

W ∗
d,n) of randomized linear (respectively, bottleneck) MAP does not exceed the costs

Φ(µ1),. . . , Φ(µnd−1) of the disjoint solutions described by (2.15), the following bound

on the optimal cost of linear or bottleneck randomized MAP can be established:

www.manaraa.com

26

Lemma 2.2.9. The optimal costs Z∗d,n, W ∗
d,n of random MAPs with linear or bottle-

neck objectives (2.7), (2.8), where cost coefficients are iid random variables, satisfy

Z∗d,n ≤ X
∑
1:nd−1 , W ∗

d,n ≤ Xmax
1:nd−1 , (2.16)

where X
∑
i , Xmax

i (i = 1, . . . , nd−1) are iid random variables with distributions F
∑
,max

that are determined by the form of the corresponding objective function, and X1:k

denotes the minimum-order statistic among k iid random variables.

Remark 2.2.10. Inequalities in (2.16) are tight: namely, in the special case of ran-

dom MAPs with n = 2, all of the n!d−1 = 2d−1 feasible solutions are stochastically

independent [29], whereby equalities hold in (2.16).

As shown in [39], the following quality guarantee on the minimum cost of the

nd−1 disjoint solutions (2.15) of linear and bottleneck MAPs can be established:

X
∑
1:nd−1 ≤ nF−1

(
n−

d−1
2n

)
, Xmax

1:nd−1 ≤ F−1
(
n−

d−1
2n

)
, d� 1,

where F−1 is the inverse of the distribution function F of the cost coefficients φi1···id .

This observation allows for constructing high-quality solutions of randomized linear

and bottleneck MAPs by searching the set of disjoint feasible solutions as defined by

(2.15).

2.3 Numerical Results

Sections 2.2.1 and 2.2.2 introduced two methods of solving randomized instances

of MAPs by constructing subsets (neighborhoods) of the feasible set of the problem

that are guaranteed to contain high-quality solutions whose costs approach optimality

www.manaraa.com

27

when the problem size (n → ∞, or, respectively, d → ∞) increases. In this section

we investigate the quality of solutions contained in these neighborhoods for small- to

moderate-sized problem instances, and compare the results with the optimal solutions

where it is possible.

Before proceeding with the numerical results of the study, in the next section,

FINDCLIQUE, the algorithm that is used to find the optimum clique in the index-

graph G∗ or the first clique in the α-set or 2α-set will be described. The results

from randomly generated MAP instances for each of these two methods are presented

next.

2.3.1 Finding n-Cliques in n-Partite Graphs

In order to find cliques in G∗, the α-set, or the 2α-set, the branch-and-bound

algorithm proposed in [30] is used. This algorithm, called FINDCLIQUE, is designed

to find all n-cliques contained in an unweighted n-partite graph.

The input to original FINDCLIQUE is an n-partite graph G(V1, . . . , Vn;E) with

the adjacency matrix M = (mij), and the output will be a list of all n-cliques contained

in G. Nodes from G are copied into a set called compatible nodes, denoted by C.

The set C is further divided into n partitions, each denoted by Ci that are initialized

such that they contain nodes from partite Vi, i = {1, . . . , n}. FINDCLIQUE also

maintains two other sets, namely, current clique, denoted by Q and erased nodes,

denoted by E. The set Q holds a set of nodes that are pairwise adjacent and construct

a clique. The erased node set, E, is furthered partitioned into n sets, denoted by

www.manaraa.com

28

Ei, that are initialized as empty. At each step of the algorithm, Ei will contain the

nodes that are not adjacent to the ith node added to Q.

The branch-and-bound tree has n levels, and FINDCLIQUE searches for n-

cliques in the tree in a depth-first fashion. At level t of the branch of bound algorithm,

the index of the smallest partition in C, θ = arg min
i
{|Ci|

∣∣i /∈ V} will be detected,

and Cθ will be marked as visited by including θ into V← {V∪ θ}, where V is the list

of partitions that have a node in Q. Then, a node q from Cθ is selected at random

and added to Q. If |Q| = n, an n-clique is found. Otherwise, C will be updated;

every partition Ci where i /∈ V will be searched for nodes cij, (j = 1, . . . , |Ci|) that

are not adjacent to q, i.e. mq,cij = 0. Any such node will be removed from Ci and

will be transferred to Et. Note that in contrast to C, nodes in different levels of E

will not necessarily be from the same partite of G. Decision regarding backtracking

is made after C is updated. It is obvious that in an n-partite graph the following will

hold:

ω(G) ≤ n, (2.17)

where ω(G) is the size of a maximum clique in G. In other words, the size of any

maximum clique cannot be larger than the number of partites, in that the maximum

clique can only contain at most 1 node from each partite of G. If after updating,

there is any Ci /∈ V with |Ci| = 0, adding qi to Q will not result in a clique of size

n, since the condition in (2.17) changes into strict inequality. In such cases, q is

removed from Q, nodes from Et will be transferred back to their respective partitions

in C, and FINDCLIQUE will try to add another node from Cθ that is not already

www.manaraa.com

29

branched on, to Q. If such a node does not exist, the list of visited partitions will

be updated (V ← V\θ), and FINDCLIQUE backtracks to the previous level of the

branch-and-bound tree. If the backtracking condition is not met and q is promising,

FINDCLIQUE will go one level deeper in the tree, finds the next smallest partition

in the updated C and tries to add a new node to Q.

When solving the clique problem in the α-set or 2α-set, since the objective is to

find the first n-clique regardless of its cost, FINDCLIQUE can be used without any

modifications, and the weights of the nodes in G∗min(α) or G∗min(2α) will be ignored.

However, when the optimal clique with the smallest cost in G∗ is sought, some mod-

ifications in FINDCLIQUE are necessary to enable it to deal with weighted graphs.

The simplest way to adjust FINDCLIQUE is to compute the weight of the n-cliques

as they are found, and report the clique with the smallest cost as the output of the

algorithm. This is the method that is used in the experimental studies whenever

the optimal solution is desired. However, to obtain a more efficient algorithm, it is

possible to calculate the weight of the partial clique contained in Q in every step of

the algorithm and fathom subproblems for which WQ ≥ WQ∗ , where WQ and WQ∗ are

the cost of the partial clique in Q and the cost of the best clique found so far by the

algorithm respectively. Further improvement can be achieved by sorting the nodes in

Ci, i = 1, . . . , n, based on their cost coefficients, and each time select the untraversed

node with the smallest node as the next node to be added to Q (as opposed to ran-

domly selecting a node, which does not change the overall computational time in the

unweighted graph if a list of all n-cliques is desired). This enables us to compute a

www.manaraa.com

30

lower bound on the cost of the maximum clique that the nodes in Q may lead to as

follows:

LBQ = WQ +
∑

i/∈V

wmin
i , (2.18)

where wmin
i is the weight of the node with the smallest cost coefficient in Ci. Any

subproblem with LBQ ≥ WQ∗ will be fathomed.

2.3.2 Random Linear MAPs of Large Cardinality

To demonstrate the performance of the method described in section 2.2.1, ran-

dom MAPs with fixed dimensionality d = 3 and different values of cardinality n

are generated. The cost coefficients φi1··· id are randomly drawn from the uniform

U [0, 1] distribution. Three sets of problems are solved for this case: (i) n = 3, . . . , 8

with d = 3, solved for optimality, and the first clique in the α- and 2α-sets, (ii)

n = 10, 15, . . . , 45, with d = 3, solved for the first clique in the α- and 2α-sets, and

finally (iii) n = 50, 55, . . . , 80, with d = 3, solved for the first clique in the 2α-set. For

each value of n, 25 instances are generated and solved by modified FINDCLIQUE

for the optimum clique or FINDCLIQUE whenever the first clique in the problem

is desired. Algorithm is terminated if the computational time needed to solve an

instance exceeds 1 hour.

In the first group, (i), instances of MAP that admit solution to optimality in

a reasonable time were solved. The results from this subset are used to determine

the applicability of Corollary 2.2.4 and bounds (2.13) and (2.14) for relatively small

values of n. Table 2.1 summarizes the average values for the cost of the clique and

www.manaraa.com

31

computational time needed for MAPs with the linear sum objective function for the

instances in group (i). The first column, n, is the cardinality of the problem. The

columns under the heading “Exact” contain the values related to the optimal clique

in G∗. The columns under the heading “G∗min(αn)” represent the values obtained

from solving the α-set for the first clique, and those under the heading “G∗min(2α)”

represent the values obtained from solving the 2α-set for the first clique. For each

of these multicolumns, T denotes the average computational time in seconds, Z is

the average cost of the cliques, |V | is the order of the graph or induced subgraph

in G∗, G∗min(α), or G∗min(2α), and ∃ CLQ shows the percentage of the problems for

which the α-set or 2α-set, respectively, contains a clique. This value is 100% for the

exact method. There was no instances in group (i) for which the computational time

exceeded 1 hour.

It is clear that using α-set or 2α-set enables us to obtain a high-quality solution

in a much shorter time by merely searching a significantly smaller part of the index

graph G∗. Based on the values for Z, the cost of the clique found in α-set or 2α-set

are consistently converging to that of the optimal clique and they provide tight upper

bounds for the optimum cost. Additionally, as is shown in the |V | column, significant

reduction in the size of the graph can be obtained if α-set or 2α-set are used.

Table 2.2 contains the corresponding results for the case of a random MAP with

bottleneck objective. In this table, W represents the value for the cost of the optimal

clique or the first clique found in α- or 2α-set. Figure 2.4(a) shows how the cost of an

optimum clique compares to the cost of the clique found in α-set and 2α-set. Clearly,

www.manaraa.com

32

the cost of optimal clique approaches 0 for both linear sum and linear bottleneck

MAPs. Figure 2.4(b) demonstrates the computational time for instances in group

(i).

The advantage of using α-set over 2α-set is that the quality of the detected clique

is expected to be higher. On average, however, a clique in 2α-set is found in a shorter

time than in α-set.

(a) (b)

Figure 2.4: Behaviour of the solutions obtained from the heuristics: solution costs (a)

and computational time (b) in random MAPs with linear sum and linear bottleneck

objective functions for instances in group (i).

www.manaraa.com

33

T
ab

le
2.

1:
C

om
p
ar

is
on

of
th

e
co

m
p
u
ta

ti
on

al
ti

m
e

an
d

co
st

fo
r

th
e

op
ti

m
u
m

cl
iq

u
e

an
d

th
e

fi
rs

t
cl

iq
u
e

fo
u
n
d

in
G∗

(α
)

an
d
G∗

(2
α

)
in

ra
n
d
om

M
A

P
s

w
it

h
li
n
ea

r
su

m
ob

je
ct

iv
e

fu
n
ct

io
n
s

fo
r

in
st

an
ce

s
in

gr
ou

p
(i

).

E
x
a
ct

G∗ m
in
(α

)
G∗ m

in
(2
α
)

n
T
∗ n,

3
Z
∗ n,

3
|V
|

∃
C
L
Q

T
G m

in
(α

)
Z
G m

in
(α

)
|V
|
∃
C
L
Q

T
G m

in
(2
α

)
Z
G m

in
(2
α

)
|V
|
∃
C
L
Q

3
0.
0
2

0.
6
04

3×
2
6

10
0

0.
04

0.
60

9
3
×
3

76
0.
03

0
.7
7
3

3
×
6

1
0
0

4
0.
0
1

0.
4
58

4×
6
3

10
0

0.
03

0.
51

4
4
×
4

88
0.
03

0
.6
3
5

4
×
7

1
0
0

5
0.
0
2

0.
3
71

5
×
12

4
10

0
0.
04

0.
39

9
5
×
4

72
0.
03

0
.5
7
1

5
×
8

1
0
0

6
0.
3
1

0.
3
74

6
×
21

5
10

0
0.
04

0.
45

2
6
×
5

92
0.
01

0
.5
2
4

6
×
9

1
0
0

7
1
4.
8
3

0.
3
29

7
×
34

2
10

0
0.
04

0.
39

2
7
×
5

80
0.
05

0.
4
7

7
×
9

1
0
0

8
9
37

.6
7

0.
2
74

8
×
51

1
10

0
0.
05

0.
32

9
8
×
5

72
0.
04

0
.4
7
8

8
×
1
0

1
0
0

T
ab

le
2.

2:
C

om
p
ar

is
on

of
th

e
co

m
p
u
ta

ti
on

al
ti

m
e

an
d

co
st

fo
r

th
e

op
ti

m
u
m

cl
iq

u
e

an
d

th
e

fi
rs

t
cl

iq
u
e

fo
u
n
d

in
G∗

(α
)

an
d
G∗

(2
α

)
in

ra
n
d
om

M
A

P
s

w
it

h
li
n
ea

r
b

ot
tl

en
ec

k
ob

je
ct

iv
e

fu
n
ct

io
n
s

fo
r

in
st

an
ce

s
in

gr
ou

p
(i

).

E
x
ac
t

G∗ m
in
(α

)
G∗ m

in
(2
α
)

n
T
∗ n,

3
W
∗ n,

3
|V
|

∃
C
L
Q

T
G m

in
(α

)
W
G m

in
(α

)
|V
|
∃
C
L
Q

T
G m

in
(2
α

)
W
G m

in
(2
α

)
|V
|
∃
C
L
Q

3
0
.0
1

0.
3
21

3
×
2
6

10
0

0.
03

0.
32

4
3×

3
76

0.
04

0.
4
3
9

3
×
6

1
0
0

4
0
.0
1

0.
2
05

4
×
6
3

10
0

0.
03

0.
24

1
4×

4
88

0.
03

0.
3
1
1

4
×
7

1
0
0

5
0
.0
1

0.
1
51

5
×
12

4
10

0
0.
02

0.
17

5×
4

72
0.
03

0
.2
7

5
×
8

1
0
0

6
0.
3

0.
1
24

6
×
21

5
10

0
0.
04

0.
16

6
6×

5
92

0.
04

0.
2
1
9

6
×
9

1
0
0

7
14

.9
6

0.
0
98

7
×
34

2
10

0
0.
04

0.
13

1
7×

5
80

0.
04

0.
1
6
3

7
×
9

1
0
0

8
95

6.
6

0.
0
75

8
×
51

1
10

0
0.
04

0.
09

2
8×

5
72

0.
04

0.
1
5
7

8×
1
0

1
0
0

www.manaraa.com

34

The second group of problems, (ii), comprises instances that cannot be solved to

optimality within 1 hour. The range of n for this group is such that the first clique

in the α-set is expected to be found within 1 hour. Tables 2.3 and 2.4 summarize

the results obtained for this group. Instances with n = 45 were the largest problems

in this group for which α-set could be solved within 1 hour. As it is expected, the

2α-set can be solved quickly in a matter of seconds where the equivalent problem

for α-set requires a significantly longer computational time. However, the quality

of the solutions found for α-set is higher than the quality for solutions in 2α-set.

Nonetheless, using 2α-set increases the odds of finding a clique, as based on lemma

2.2.5, 2α-set is expected to contain an exponential number of cliques. It is obvious

from the ∃ CLQ column that not all of the instances in α-set contain at least a clique,

whereas 100% of the instances in 2α-set contain one that can be found within 1 hour.

Column Timeout represents the percentage of the problems that could not be solved

within the allocated 1 hour time limit. Out of 25 instances solved for n = 45, only 4

(16%) could not be solved in 1 hour. Out of the 21 remaining instances, 20 instances

contained a clique, and only 1 did not have a clique. The behavior of the average cost

values for the problems solved in this group are depicted in Figure 2.5.

www.manaraa.com

35

T
ab

le
2.

3:
C

om
p
ar

is
on

of
th

e
co

m
p
u
ta

ti
on

al
ti

m
e

an
d

co
st

fo
r

th
e

fi
rs

t
cl

iq
u
e

fo
u
n
d

in
G∗

(α
)

an
d

G∗
(2
α

)
in

ra
n
d
om

M
A

P
s

w
it

h
li
n
ea

r
su

m
ob

je
ct

iv
e

fu
n
ct

io
n
s

fo
r

in
st

an
ce

s
in

gr
ou

p
(i

i)
.

G∗ m
in
(α

)
G∗ m

in
(2
α
)

n
T
G m

in
(α

)
Z
G m

in
(α

)
|V
|
∃
C
L
Q

T
im

eo
u
t

T
G m

in
(2
α

)
Z
G m

in
(2
α

)
|V
|

∃
C
L
Q

T
im

eo
u
t

10
0.
0
5

0
.2
6
6

10
×
5

60
-

0.
05

0.
37

1
0
×
10

1
0
0

-
15

0.
0
6

0
.2
2
8

15
×
6

76
-

0.
06

0.
31

3
1
5
×
11

1
0
0

-
20

0.
0
8

0
.1
6
5

20
×
6

56
-

0.
07

0.
24

6
2
0
×
12

1
0
0

-
25

0.
1
5

0
.1
4
7

25
×
7

80
-

0.
08

0.
2

2
5
×
13

1
0
0

-
30

0.
8
9

0
.1
3
4

30
×
7

92
-

0.
09

0.
17

1
3
0
×
13

1
0
0

-
35

8.
5
4

0.
1
1

35
×
7

88
-

0.
14

0.
15

1
3
5
×
13

1
0
0

-
40

1
00

.8
5

0
.0
9
7

40
×
7

92
-

0.
46

0.
13

1
4
0
×
13

1
0
0

-
45

4
05

.1
6

0
.0
8
5

45
×
7

80
16

1.
09

0.
12

2
4
5
×
14

1
0
0

-

T
ab

le
2.

4:
C

om
p
ar

is
on

of
th

e
co

m
p
u
ta

ti
on

al
ti

m
e

an
d

co
st

fo
r

th
e

fi
rs

t
cl

iq
u
e

fo
u
n
d

in
G∗

(α
)

an
d

G∗
(2
α

)
in

ra
n
d
om

M
A

P
s

w
it

h
li
n
ea

r
b

ot
tl

en
ec

k
ob

je
ct

iv
e

fu
n
ct

io
n
s

fo
r

in
st

an
ce

s
in

gr
ou

p
(i

i)
.

G∗ m
in
(α

)
G∗ m

in
(2
α
)

n
T
G m

in
(α

)
W
G m

in
(α

)
|V
|
∃
C
L
Q

T
im

eo
u
t

T
G m

in
(2
α

)
W
G m

in
(2
α

)
|V
|

∃
C
L
Q

T
im

eo
u
t

10
0
.0
4

0
.0
6
5

10
×
5

60
-

0.
02

0.
09

8
10
×
1
0

1
0
0

-
15

0
.0
4

0
.0
3
7

15
×
6

76
-

0.
02

0.
05

6
15
×
1
1

1
0
0

-
20

0
.0
5

0
.0
2
3

20
×
6

56
-

0.
04

0.
03

6
20
×
1
2

1
0
0

-
25

0.
1

0
.0
1
7

25
×
7

80
-

0.
08

0.
02

5
25
×
1
3

1
0
0

-
30

0
.8
7

0
.0
1
2

30
×
7

92
-

0.
1

0.
01

9
30
×
1
3

1
0
0

-
35

8
.5
3

0
.0
0
9

35
×
7

88
-

0.
15

0.
01

5
35
×
1
3

1
0
0

-
40

10
0.
9
9

0
.0
0
7

40
×
7

92
-

0.
46

0.
01

1
40
×
1
3

1
0
0

-
45

40
3.
5
2

0
.0
0
6

45
×
7

80
16

1.
09

0.
00

9
45
×
1
4

1
0
0

-

www.manaraa.com

36

Table 2.5: Computational time and cost for the first clique found in G∗(2α) in
random MAPs with linear sum objective functions for instances in group (iii).

G∗min(2α)
n TGmin(2α) ZGmin(2α) |V | ∃ CLQ Timeout
50 1.56 0.11 50×14 100 -
55 52.29 0.099 55×14 96 4
60 189.9 0.091 60×14 92 8
65 568.9 0.085 65×14 96 4
70 919.79 0.078 70×14 64 36
75 1556.89 0.075 75×14 40 60
80 1641.26 0.07 80×14 16 84

Finally, the third group, (iii), includes instances for which the cardinality of

the problem prevents the α-set from being solved within 1 hour. Thus, for this set,

only the 2α-set is used. The instances of this group were solved with the parameter

values n = 50, 55, . . . , 80 and d = 3. Tables 2.5 and 2.6 summarize the corresponding

results. When the size of the problem n ≥ 55, some instances of problems become

impossible to solve within 1 hour time limit. The average cost for the instances that

are solved keeps the usual trend and converges to 0 as n grows. The largest problems

attempted to be solved in this group are MAPs with n = 80. Out of 25 instances of

this size, only 4 could be solved within 1 hour. Figure 2.5(a) the average values of

solution cost and computational time for the instances of both linear sum and linear

bottleneck MAPs. Note that as the size of the problem increases, the reduction in

the size of problem achieved from using α-set or 2α-set becomes significantly larger.

For instance, in MAP with n = 80 and d = 3, the 2α-set has 80× 14 nodes, while the

complete index graph will have 80× 802 nodes.

www.manaraa.com

37

Table 2.6: Computational time and cost for the first clique found in
G∗(2α) in random MAPs with linear bottleneck objective functions for
instances in group (iii).

G∗min(2α)
n TGmin(2α) WGmin(2α) |V | ∃ CLQ Timeout
50 1.56 0.008 50×14 100 -
55 52.19 0.006 55×14 96 4
60 190.6 0.005 60×14 92 8
65 566.71 0.005 65×14 96 4
70 920.44 0.004 70×14 64 36
75 1552.74 0.004 75×14 40 60
80 1631.89 0.003 80×14 16 84

2.3.3 Random MAPs of Large Dimensionality

The second set of problem instances includes MAPs that are solved by the heuris-

tic method explained in section 2.2.2. Problems in this set have the cardinality

n = 2, . . . , 5 and dimensionality in the range d = 2, . . . , d̄n, where d̄n is the largest

value for d for which an MAP with cardinality n can be solved within 1 hour using the

heuristic method. For each pair of (n, d), 25 instances of MAP with cost coefficients

randomly drawn from the uniform U [0, 1] distribution are generated. Generated in-

stances are then solved by the modified FINDCLIQUE for the optimal clique (when

possible) and the optimal costs are compared with the costs obtained from the heuris-

tic method. The result of the heuristic method for instances with n = 2 is optimal,

and the heuristic checks all the 2d−1 solutions of the MAP. Thus, using the modified

FINDCLIQUE to find the optimum clique is not necessary.

Figure 2.6 demonstrates the cost convergence in instances with n = 2, 3, 4, 5 for

both linear sum and linear bottleneck MAPs. Figure 2.6(a) demonstrates the cost

convergence in MAPs with n = 2 and d = 2, . . . , 27. Recall that due to Remark 2, for

cases with n = 2 the heuristic provides the optimal solution. The heuristic method

www.manaraa.com

38

(a) (b)

Figure 2.5: Bahaviour of the solution from the heuristic: comparison of the cost (a)

and computational time (b) for MAPs with linear sum and linear bottleneck objective

functions for group (ii) and (iii).

provides high quality solutions that are consistently converging to the optimal solution

for all cases and the average value of the obtained costs from the heuristics approaches

0. Memory limitations, as opposed to computational time, were the restrictive factor

for solving larger instances as the computational time for the problems of this set

never exceeded 700 seconds.

Figure 2.7 demonstrates the computational time for the optimal method as well

as the heuristic method in instances with n = 2, 3, 4, 5 for both linear sum and linear

bottleneck MAPs. The computational time has an exponential trend as the number

of solutions for the MAP, or the number of solutions checked by the heuristic grow

in an exponential manner.

www.manaraa.com

39

(a) (b)

(c) (d)

Figure 2.6: Comparison of the cost obtained from the heuristic method with the

optimum cost in MAPs with linear sum and linear bottleneck objective functions

with (a) n = 2, (b) n = 3, (c) n = 4, and (d) n = 5

www.manaraa.com

40

(a) (b)

(c) (d)

Figure 2.7: Comparison of the computational time in logarithmic scale needed for

the optimal method and the heuristic method in MAPs with linear sum and linear

bottleneck objective functions with (a) n = 2, (b) n = 3, (c) n = 4, and (d) n = 5

www.manaraa.com

41

CHAPTER 3
ON FINDING K-CLIQUES IN K-PARTITE GRAPHS

3.1 Introduction

Given an (undirected) graph G = (V,E), where V is set of nodes and E is the

set of arcs, a clique in G is defined as a complete subset of G, i.e., a set of nodes in

V that are pairwise adjacent. A clique of size k is called k-clique; the largest clique

in a graph is called the maximum clique and its size is denoted by ω(G). Note that

G may contain several cliques of size ω(G). Closely related to the concept of a clique

is that of an independent set of G, defined as an induced subgraph of V whose nodes

are pairwise disjoint.

The Maximum Clique Problem (MCP) consists in finding the largest clique in a

graph, and is of fundamental importance in discrete mathematics, computer science,

operations research, and related fields [10]. In many applications it is of interest to

identify all maximum cliques in a graph. This problem is known as the Maximum

Clique Enumeration Problem (MCEP). In the present work, we consider a special

case of the MCEP, concerned with finding all k-cliques in a k-partite graph. A

graph G = (V,E) is called k-partite if the set of nodes V can be partitioned into k

independent sets, or partites Vr, r = 1, . . . , k:

V =
k⋃

r=1

Vr, Vr ∩ Vs = ∅, r 6= s, such that for all i, j ∈ Vr : (i, j) /∈ E. (3.1)

Clearly, one has that ω(G) ≤ k in a k-partite graph G, since the maximum clique

cannot contain more than one node from each independent set Vr. The problem of

www.manaraa.com

42

finding k-cliques in k-partite graphs has found applications in textile industry [30],

data mining and clustering [56], and identification of protein structures [47]. This

problem is not necessarily equivalent to MCEP since it does not account for maximum

cliques with ω(G) < k.

Grunert et al [30] proposed branch-and-bound algorithm FINDCLIQUE for the

problem of finding all k-cliques in k-partite graphs, which takes as an input a graph

G = (V,E), where V satisfies (3.1), and produces the set Q of k-cliques contained in

G as an output. FINDCLIQUE is a recursive method, such that level t of recursion

corresponds to the level t of branch-and-bound tree, which in turn, is associated with

the t-th partite that is branched on in V . Starting at the root (t = 0) of the branch-

and-bound tree with a partial solution S = ∅, at each step of branch-and-bound

procedure a node is added to or removed from S until S amounts to a k-clique in G,

i.e., |S| = k, or it is verified that G contains no k-cliques, ω(G) < k.

Let B = {1, . . . , k} be the index set of partites in G, V =
⋃
b∈B Vb, and BS

denote the set of partites that have a node in S:

BS = {b ∈ B | Vb ∩ S 6= ∅}.

Given a partial solution S, a node is called compatible if it is adjacent to all the nodes

in S; the set of compatible nodes w.r.t. S is denoted by CS:

CS = {i ∈ V | (i, j) ∈ E ∀ j ∈ S}.

The set CS is further partitioned into subsets containing nodes from the same par-

www.manaraa.com

43

tite:

CS =
⋃

b∈BS

CS,b,

where BS = B \BS, and CS,b ⊆ Vb is given by

CS,b =
⋃

s∈S

(Vb ∩N(s)),

with N(s) being the set of nodes adjacent to node s.

At the root node of the branch-and-bound tree (t = 0), one has S = ∅, B =

BS = {1, . . . , k}, BS = ∅, and CS,b = Vb for all b ∈ B. At a level t of the branch-

and-bound tree, bt ∈ BS is selected as the partition to branch on. In order to achieve

the greatest reduction in the size of the branch-and-bound tree when pruning, bt is

selected as the partition with the smallest number of nodes:

bt ∈ arg min
b
{|CS,b| | b ∈ BS}. (3.2)

As long as there is a node nt ∈ CS,bt that is not traversed, the search process is

restarted from this point with S := S ∪{nt} as the new partial solution. To this end,

the set CS of compatible nodes is updated with respect to S ∪ {nt}:

CS,b := CS,b ∩N(nt) for all b ∈ BS. (3.3)

Maintaining the sets CS,b of nodes compatible with the current partial solution S

is a key aspect of the algorithm, thus for backtracking purposes the nodes that are

removed from CS,b during (3.3) are added to the set C =
⋃k
t=1 Ct, which is similarly

partitioned into k levels Ct, each level corresponding to level t of the branch-and-

bound tree. In other words, Ct contains the nodes in CS,b that are not adjacent to

www.manaraa.com

44

node nt:

Ct = {i ∈ CS,b | (i, nt) /∈ E, b ∈ BS}.

Obviously, after this step, CS,bt = ∅. A subproblem with a partial solution S is

promising if all of the partitions in CS that do not share a node in the partial solution

are nonempty:

|CS,b| > 0 for all b ∈ BS, b 6= bt. (3.4)

Let P be the number of partitions CS,b ⊆ CS that contain at least one node; then,

an upper bound on the size of the largest clique containing S is given by |S|+ P . If

|S|+P = k, the current subproblem is feasible, meaning S may be part of a k-clique.

For a feasible subproblem, the algorithm traverses deeper into the branch-and-bound

tree, t := t+ 1, and a new subproblem is created.

Accordingly, a subproblem with partial solution S is pruned if

|S|+ P < k, (3.5)

i.e., there exists no clique of size k that contains S. For a nonpromising subproblem,

set CS,bt is restored by moving the nodes in Ct back to CS, CS := CS ∪ Ct. The last

operation implicitly requires that the nodes from Ct are put back into the partitions

of CS that they were removed from:

CS,π(v) := CS,π(v) ∪ v for all v ∈ Ct, (3.6)

where π(i) is the index of the partite that node i belongs to: i ∈ Vπ(i); moreover, the

relative orders of nodes in the partites Vb should be preserved in CS,b, given that the

nodes in G are assumed to be ordered/numbered.

www.manaraa.com

45

The search process is then restarted, provided that there exists a node in partition

CS,bt that is not traversed. If there is no such node, FINDCLIQUE returns to the

previous level t− 1 of the branch-and-bound tree.

3.2 A bitwise algorithm for finding k-cliques in a k-partite graph

In this section, we present an algorithm, referred to as BitCLQ, for the k-clique

enumeration problem in a k-partite graph, which improves upon the FINDCLIQUE

algorithm of Grunert et al [30] by introducing bitset data structures and utilizing

bit parallelism for updating the set of compatible nodes and improving backtrack-

ing.

3.2.1 Bitsets

Bitsets are essentially binary vectors, or sequences of bits, and as such can be

utilized efficiently in computer codes. Particularly, bitsets are useful for storing adja-

cency matrices of graphs, or specific subsets of ordered sets. For example, in a graph

on six nodes {v1, . . . , v6} = V , a clique with nodes v1, v2, v3, v5 can be represented

by a bitset {111010}, where each bit corresponds uniquely to a node in the graph,

with the significant bits (i.e., bits equal to 1) indicating the nodes in the clique. Bit

parallelism is a form of parallel computing that achieves computational improvements

by representing the problem data in bitsets of size R, where R is the machine word

size (e.g., 32 or 64), such that they can be processed together within a single pro-

cessor instruction. Bit parallelism has been successfully used in many computational

algorithms, particularly for string matching [27, 31, 32]. Recently, bit parallelism has

www.manaraa.com

46

been employed for solving hard combinatorial problems, such as SAT [66] and the

Maximum Clique Problem [65].

In the present work, bit parallelism is used to improve the computational pro-

cedure for updating the set of compatible nodes in (3.3), and, moreover, to achieve

faster backtracking by eliminating the need for set C. In addition, use of bitsets

allows for improvements in memory storage efficiency for problem data structures,

such as the set of compatible nodes and the adjacency matrix of the graph.

Of particular significance in the context of the present work is the operation of

indexing the first significant bit in a bitset, also known as the forward bit scanning.

One of the techniques for this purpose relies on use of the De Bruijn sequence with a

perfect hash table [45]. The value to be looked up in the hash table is given by HR

below:

HR := (x ∧ −x)D � (R− log2R), (3.7)

where x is the bitset for which the first significant bit has to be indexed, D is an

instance of De Bruijn sequence, R is the machine word size, and � stands for the

binary shift right operator. HR is effective for bitsets of maximum size equal to R.

For larger bitsets, special containers need to be devised. The hash table required to

look up the value of HR is created based on the particular De Bruijn sequence used

in (3.7).

Note that in (3.7) multiplication is performed modulo R and only the last log2R

bits of the result will be retained. More details on forward bit scanning and the

specification of the De Bruijn sequence used in (3.7) can be found in [45].

www.manaraa.com

47

3.2.2 BitCLQ

Below we present a modification of FINDCLIQUE, which we refer to as BitCLQ,

that uses bitset data structures and bit parallelism for keeping track of the nodes in G

that are compatible to the current partial solution S, while simultaneously reducing

the computational cost of backtracking.

To this end, we introduce a set Z consisting of k levels, Z1, . . . , Zk. Each of these

k levels will be used to represent the compatible nodes to the partial solution S at

the t-th level of the branch-and-bound tree, where 1 ≤ t ≤ k. Every level in Z is

further partitioned into k sets, each corresponding to a partite Vb in G:

Zt =
⋃

b∈B

Zt,b, t = 1, . . . , k.

The sets Zt,b are represented by bitsets of size |Vb|. Let Zt,b,i be the i-th bit in Zt,b

corresponding to the i-th node in Vb, such that Zt,b,i = 1 if the i-th node in Vb is

compatible with all the nodes in the partial solution S at the t-th level of the branch-

and-bound tree in BitCLQ:

Zt,b,i =

{
1, if (i, j) ∈ E for all j ∈ St;
0, otherwise.

Clearly, each level Zt of Z is an ordered set of combination of bitsets with the total

size |V |. Further, the adjacency matrix M of graph G is stored in the bitset form,

with the convention that the i-th row (column) corresponds to the i-th bit in Zt,

t = 1, . . . , k.

BitCLQ is initialized by setting t := 0, S := ∅, B = BS := {1, . . . , k}, and

Q := ∅, where Q is the set of all k-cliques in G. Note that since at the beginning all the

www.manaraa.com

48

nodes in G can be added to S to extend its size, all the bits in Z1 are significant:

Z1,b,i = 1 for all b ∈ B(St), i ∈ Vb.

At level t of the branch-and-bound tree, the partition bt to branch on is selected

as

bt ∈ arg min
b
{|Zt,b| | b ∈ BS}, (3.8)

where |Zt,b| is defined as the number of significant bits in the bitset Zt,b. The forward

bit scanning method discussed in Section 3.2.1 is used to identify node nt ∈ Vbt that

has not been traversed and thus can be added to the partial solution. As long as such

a node exists in Vbt , the search process is restarted with S := S ∪ {nt} as the partial

solution, and the corresponding bit in Zt,bt is set to 0.

Utilizing bitsets also facilitates the process of updating the compatible nodes:

when nt is added to partial solution, Zt+1 is created by performing a logical AND

operation with Zt and the row M(nt) of the adjacency matrix corresponding to the

node nt as operands:

Zt+1 = Zt ∧M(nt). (3.9)

Similarly to FINDCLIQUE, let P denote the number of partitions Zt,b with |Zt,b| > 0

at level the t of the branch-and-bound tree. If |S| + P = k, the current partial

solution is promising, so that a new subproblem is created, and BitCLQ proceeds

one level deeper into the branch-and-bound tree, t := t + 1. If the partial solution

is not promising, the method presented in Section 3.2.1 is used to select nodes in Vbt

that have not been traversed. If such a node is found, the search process is restarted,

www.manaraa.com

49

otherwise backtracking is performed by simply updating t := t − 1. Note that due

to the special structure of Z, BitCLQ does not need to restore the set of compatible

nodes during backtracking, in contrast to the update procedure (3.6) for the set CS

that is performed in FINDCLIQUE.

3.2.3 Example

As an illustration, consider the 3-partite graph that is shown along with its

adjacency matrix M in Figure 3.2, where the partite 1 consists of nodes {1, 2, 3},

partite 2 contains nodes {4, 5, 6}, and partite 3 contains nodes {7, 8, 9}. BitCLQ is

initialized by setting S := ∅, BS := {1, 2, 3} and Z1 := {111|111|111}. Since all the

partites are of the same size, i.e. |Z1,b| = 3 for all b ∈ BS, the one to branch on

is chosen arbitrarily; assume that the first partite Z1,1 is chosen for branching. The

search process from this point restarts 3 times, each time adding one of the three

nodes in Z1,1. The first node to add to S is node 1, Z1,1,1 is then set to 0, and

Z2 is subsequently created by performing logical AND operation with Z1 and the

corresponding row of the adjacency matrix M as operands:

t := 1,

S := {1},

Z2 := Z1 ∧M(1) = {011|111|111} ∧ {000|111|011} = {000|111|011},

BS := {2, 3}.

As a result, the set Z2 of nodes compatible with the partial solution S = {1} contains

nodes {4, 5, 6, 8, 9}. Since none of the partites in BS is empty, the partial solution S is

www.manaraa.com

50

Figure 3.1: Pseudo-code for BitCLQ

www.manaraa.com

51

promising and a new subproblem is created. The objective in the new subproblem is

to find a |BS|-clique in Z2. A node from Z2,3 will be added to S (since |Z2,3| < |Z2,2|).

The first node in Z2,3 to add to the partial solution is node 8. The bit corresponding

to node 8 is set Z2,3,2 := 0, and we have

t := 2,

S := {1, 8},

Z3 := Z2 ∧M(8) = {000|111|001} ∧ {111|001|000} = {000|001|000},

BS := {2}.

Again, the partites in BS contain at least 1 node (node 6) in Z3. So the partial

solution is promising, and a new subproblem is created. In the next step, node 5 is

added to S:

t := 3,

S := {1, 8, 6}.

At this point, since |S| = k = 3, i.e., a k-clique is found. To continue the search for

other k-cliques, the last node in S is removed. BitCLQ searches Z3,2 for another node

that can be added to S. Since such a node does not exist, the algorithm backtracks:

t := 2, node 8 is removed from S, and BitCLQ restarts with S = {1, 9} as the partial

solution.

3.3 Numerical Results

In order to illustrate the performance of the proposed method, the k-clique enu-

meration problem for k-partite graphs has been solved by BitCLQ and FINDCLIQUE

www.manaraa.com

52

M =

1 2 3 4 5 6 7 8 9

1 0 0 0 1 1 1 0 1 1

2 0 0 0 0 0 1 0 1 1

3 0 0 0 0 0 0 0 1 1

4 1 0 0 0 0 0 1 0 0

5 1 0 0 0 0 0 1 0 1

6 1 1 0 0 0 0 1 1 0

7 0 0 0 1 1 1 0 0 0

8 1 1 1 0 0 1 0 0 0

9 1 1 1 0 1 0 0 0 0

Figure 3.2: A 3-partite graph and its adjacency matrix.

for randomly generated graph instances of several types. Both algorithms were imple-

mented in C++ and ran on a 64-bit Windows machine with 3GHz dual-core processor

and 4GB of RAM. It is worth noting that the original implementation of FIND-

CLIQUE algorithm by Grunert et al [30] relies on the use of vectors and links

data types from the C++ standard template library (STL). In our experiments, we

observed that by replacing the original data structure of vectors of lists with arrays,

up to 300% improvement in FINDCLIQUE running time is achieved on the data

sets used in our case study. The numerical results reported for the FINDCLIQUE

algorithm are obtained using this “improved” implementation.

Our numerical experiments involve randomly generated instances of k-partite

graphs of two types. The first set of instances consists of two groups: small-size

instances and large-size instances. In the small-size instances, k-partite graphs are

randomly generated with the number of partites in the range k ∈ [3, 10]. For each

www.manaraa.com

53

Table 3.1: Average computational time (in seconds) to

find all the k-cliques (#CLQ) contained in randomly

generated k-partite graphs.

k m |V | p #CLQ FINDCLIQUE BitCLQ

3 100 300 0.1 1004 0.005 0.002
4 100 400 0.15 1124 0.008 0.002
5 100 500 0.2 1047 0.015 0.003
6 100 600 0.25 939 0.031 0.006
7 50 350 0.35 192 0.009 0.004
8 50 400 0.4 299 0.021 0.007
9 50 450 0.45 683 0.055 0.021
10 50 500 0.5 2672 0.176 0.071

value of k, the reported running times and the number of k-cliques in the graph are

averaged over 10 instances. Table 3.1 shows the summary of the experimental results

for this first group. The columns of the table show the number k of partites in the

k-partite graph, the number m of nodes in each partite of the graph, the total number

|V | of nodes in the graph, the graph’s density p, and the total number of k-cliques in

the graph (#CLQ). The density parameter p is used for generation of the graphs, and

is equal to the probability of an edge connecting two nodes from different partites:

Pr {(vi, vj) ∈ E} = p.

The second group include instances of larger size with the values of k ∈ {25, 50, 75, 100}.

For each value of k in this group, 10 random instances of the k-partite graph have

been generated and solved by FINDCLIQUE and BitCLQ. Table 3.2 summarizes the

results of the experiments for this group. Since the graphs used in this set of experi-

ments are rather large and the list of all k-cliques contained in them may not be found

in a reasonable time, the solution process has been terminated after 200 seconds and

www.manaraa.com

54

Table 3.2: Average number of k-cliques

found in randomly generated instances of k-

partite graphs after 200 seconds.

k m |V | p time FINDCLIQUE BitCLQ

25 40 1000 0.8 200 13,556,733 23,516,581
50 30 1500 0.9 200 800,369 1,032,111
75 30 2250 0.95 200 557,042,389 735,722,241
100 30 3000 0.95 200 348,416 365,799

the number of k-cliques found by each method was recorded. BitCLQ outperformed

FINDCLIQUE in all cases.

The second set of experiments was conducted to compare the performance of

BitCLQ with FINDCLIQUE on randomly generated instances of Multidimensional

Assignment Problem (MAP). As shown in [38, 40, 49], high-quality solutions for ran-

domized MAPs can be obtained as n-cliques in n-partite graphs that are constructed

in a special way from the problem’s data (in this case, n denotes the number of ele-

ments per dimension in a d-dimensional MAP). For MAPs with random iid costs, the

resulting n-partite graph can be viewed as randomly generated with a certain density.

The corresponding results are reported in Table 3.3, where n denotes the number of

partitions in the graphs, and d is the number of dimensions d in the MAP.

www.manaraa.com

55

Table 3.3: Average computational time (in seconds) needed to find

the first n-clique in an n-partite graph corresponding to a random-

ized instance of the Multidimensional Assignment Problem with d

dimensions and n elements per dimension.

n d m |V | p BitCLQ FINDCLIQUE

10 3 10 100 0.74 0.00 0.00
20 3 12 240 0.86 0.00 0.00
30 3 13 390 0.91 0.02 0.00
40 3 13 520 0.93 0.76 1.38
50 3 14 700 0.94 0.42 0.42
60 3 14 840 0.95 55.28 86.87
70 3 14 980 0.96 251.78 395.34

10 4 22 220 0.65 0.00 0.00
20 4 28 480 0.82 0.08 0.20
30 4 31 930 0.87 8.18 22.41

10 5 48 480 0.59 0.00 0.01
20 5 68 1360 0.77 13.29 28.23

www.manaraa.com

56

CHAPTER 4
GRAPH PARTITIONING FOR THE DECOMPOSABLE COST

MULTIDIMENSIONAL ASSIGNMENT PROBLEM

4.1 introduction

As was explained in chapter 2, given two sets V and W of cardinality n, the

linear assignment problem seeks to find the least cost assignment of elements in set

V to elements of set W (eq. (2.1)). It was also explained that when the number of

sets, or equivalently dimensions, in an assignment problem is greater than two, the

resulting problem is referred to as the Multidimensional Assignment Problem (MAP).

As an example for an MAP consider the problem of assigning n jobs to n workers

to n machines. This will be an instance of a 3-dimensional assignment problem (sec

2.1).

In this chapter, we are discussing heuristic methods for the decomposable cost

MAP’s. Decomposable cost MAP is a special case of MAP described in chapter 2

where in equation (2.7) the objective function will be replaced by:

Z∗d,n = min
x∈{0,1}nd

n∑

i1=1

· · ·
n∑

id=1

ci1···idxi1···id (4.1)

where the cost of each hypergraph (i1 · · · id), denoted by ci1···id , is obtained from:

ci1···id =
∑

e∈(i1···id)

w(e) (4.2)

where e is an edge contained in the hyperedge and w(e) is the cost (weight) of

the edge e in the complete d-partite weighted graph representing the MAP. In other

www.manaraa.com

57

words, the cost of each hyperedge in a decomposable cost MAP is the summation of

the costs (weights) of the edges contained in the hyperedge.

Since a decomposable cost MAP can be converted to a regular MAP, some of

approaches explained in this chapter will also apply to the regular MAP.

In the following sections, we will explain several methodologies for partition-

ing the graph representing the decomposable cost MAP, into several smaller disjoint

subgraphs and show that the solutions from each subproblem (subgraph) can be re-

combined to provide upper and lower bounds to the original problem. The provided

upper bound can be used in intelligent enumeration algorithms, such as branch and

bound methods to prune the non-promising nodes in the branch and bound tree.

The idea that is used in the following section is that given an instance of a

multidimensional assignment problem, any solution to the MAP with d dimensions

and n elements in each dimension can be represented by a set of n disjoint d-cliques

in the respective graph representation of the MAP. It is well-known that any instance

of MAP with m ≥ 3 is NP-complete. The number of solutions for such MAP grows

exponentially with the number of dimensions d and factorially with the size of the

dimension n1. In the reminder of the chapter, MAP will refer to decomposable cost

multidimensional assignment problem unless otherwise stated.

1An MAP with number of dimensions d and size of each dimension n has (n!)d feasible
solutions.

www.manaraa.com

58

4.2 Element Partition

In this section, we will explain how an MAP instance can be partitioned along

the elements in each dimension. We start by explaining simpler cases of dividing

the elements of each dimension into two groups, and extend it to a case where only

a single partition containing two elements from each dimension is considered. The

remaining elements of each dimension are added to the said partition iteratively until

it contains all the elements from all the dimensions.

4.2.1 Two disjoint element partition

Denote by MAP(d,n) an instance of an MAP with dimensionality (number of di-

mensions) d and cardinality (size of each dimension) n. The simplest way to partition

the elements is to divide the elements in each dimension into two equally-sized groups.

Each of the resulting problems will be an instance of MAP (d, n
2
). In other words,

the smaller problems will have the same number of dimensions but only half of the

elements of the original problem in each dimension. Figure 4.1 shows the complete

graph of an MAP(6,6) and how it can be partitioned into two subproblems. Figure

4.1(c) shows a feasible solution for each of the partitions. Subproblems can be solved

by any available solver for MAP’s. The optimal solution for each subproblem is a

set of n
2

disjoint d-cliques. The final output of the two-disjoint element partitioning

heuristic is the combination of the disjoint cliques in each subproblem. The cost of

the solution obtained after the combination step is an upper bound on the cost of

the optimal solution of the original problem as by partitioning we are disregarding a

www.manaraa.com

59

portion of the feasible solutions of the original problem. Note that there are [
(
n
r

)
]d

ways to partition nodes of each dimension into two disjoint partitions.

(a) (b) (c)

Figure 4.1: Partitioning of an MAP with d = 6 and n = 6: (a) A complete 6-

partite graph MAP(6,6), (b) partitioning of the graph in two MAP(6,3) instances (c)

6 distinct cliques shown in each partitioning

The next theorem follows immediately:

Theorem 4.2.1. For any two element partitions N1 and N2 such that N1 ∩N2 = ∅:

Z∗[MAP (d,N1)] + Z∗[MAP (d,N2)] ≥ Z∗[MAP (d,N1 ∩N2)]

where d is the set of dimensions and N is the set of elements, and Z∗ the optimal

value of a given MAP.

A full d-dimensional assignment problem has a complexity of (n!)d−1, whereas

each of the partitions have the complexity of (n
2
)!d−1. Thus the complexity of solving

www.manaraa.com

60

the partitioned problems is 2 × (n
2
)!d−1, which is smaller than the complexity of the

original problem. The two-disjoint element partitioning heuristic sacrifices the quality

of the output to decrease the complexity of the problem. However we add another

dimension of complexity to our problem due to the multiple ways of partitioning a

single graph into two disjoint subgraphs.

4.2.2 Element augmentation

For an MAP (d, n), the element augmentation method starts with a single parti-

tion containing all the dimensions but with only 2 elements from each dimension. The

resulting subproblem is an instance of MAP(d,2). After solving the partial problem,

another element from each dimension of the original problem is added to each of the

dimensions in the subproblem and the new subproblem will be solved. This process

repeats and new elements are added to the single partition until all elements from

the original problem are considered in the partition, and an exact solution for the

original problem is obtained . In each step, the solution obtained from the previous

step can be used to obtain an upper bound for the new problem. The augmentation

method is described in fig. 4.2.

An upper bound for the MAP(d,i) instance (line 5) is obtained by extending

the i − 1 disjoint cliques (the exact solution for the previous level) by adding a new

disjoint clique containing the newly added elements.

The worst-case complexity of element augmentation method will be equal to:

www.manaraa.com

61

Input: An instance of MAP(d,n)

1. Create a subproblem with 2 elements from each dimension.
2. Solve the resulting MAP (d, 2) to optimality and obtain two d-cliques
3. For i = 3 to n
4. For each dimension select a new element and

create an instance of MAP(d,n)
5. Obtain an upper bound for the MAP(d,i) instance

by adding the d-clique formed by the new elements
to the solution from the previous step.

6. solve the MAP(d,i) instance to optimality using the obtained upper
bound from step 5.

7. Next

Figure 4.2: The pseudo-code for the element augmentation heuristic

T (d, n) =
n∑

i=2

(i!)d−1 (4.3)

which is larger than the worst-case complexity of the original problem (n!)d−1.

This is due to the fact that to solve the MAP(d,n) using element augmentation

method, intermediate subproblems MAP(d,2), . . . , MAP(d,n) are solved separately.

However, it is expected that the average complexity is reduced by the tighter upper

bounds obtained from the intermediate subproblems.

4.3 Dimension Partition

An alternative method for element partitioning to solve MAP(d,n) is to partition

the MAP along the dimension set. One approach in this category is Two Disjoint

Subgraphs, the partitioning of the set of dimensions into two (usually) equally-sized

sets to create two instances of MAP (d
2
, n). The other approach in this category is

www.manaraa.com

62

the Dimension Augmentation; to start from two given dimensions and iteratively

augmenting the subproblem with additional dimensions.

4.3.1 Two Disjoint dimension partition

The idea in this approach is to convert a large d-dimensional assignment problem

to two smaller d
2
-dimensional assignment problems. Solving the smaller subproblems

have the complexity of 2 × (n!)
d
2
−1. However, in order to obtain a feasible solution

for the original problem from the solution of each subproblem, a reconciliation step is

necessary. As an example consider the two partitions for an MAP(6,6) displayed in

fig. 4.3. This figure represents how the graph in 4.1(a) can be partitioned along its

dimensions. The final solution to each subproblem contains 6 disjoint cliques (which

is equal to the number of elements in each dimension of the original MAP) each of

the size 3. A solution to the original problem should contain 6 disjoint cliques each

of the size 6. For the reconciliation step, an LAP can be set up to determine the

best assignment of the 6 disjoint cliques in the first set to the 6 disjoint cliques in the

second set.

The next theorem follows immediately:

Theorem 4.3.1. For any two nonempty dimension partitions D1 and D2, such that

D1 ∩D2 = ∅,

Z∗[MAP (M1, N)] + Z∗[MAP (M2, N)] < Z∗[MAP (M1 ∪M2, N)]

where M is the set of dimensions, N is the set of elements, and z∗ is the optimal

value of a given assignment problem.

www.manaraa.com

63

Title Suppressed Due to Excessive Length 9

have to choose n×
�m

2

�
−2n×

�m/2
2

�
= n× m

2
2 edges from n2×

�m
2

�2 available edges.
Figure ?? shows the complete graph of AP(m,n) partitioned into two graphs of
AP(m/2,n).

(a) Two complete AP(m/2,n)’s (b) Feasible solution of two AP(m/2,n)’s

Fig. 4 Dimension Partition

Notice that combining the solutions from the two subproblems results in a total
of twelve disjoint cliques. The original MAP requires exactly six disjoint cliques.
We must somehow build a solution for a single AP(m,n) from the solutions from
two AP(m/2,n)’s. Theorem ??, where M is the set of dimensions and N is the set
of elements, gives a lower bound to the original MAP by combining the clique costs
from the two subproblems. This is a strict inequality because the solutions of the
partitions are not connected and is true regardless of how the dimension set M is
partitioned.

Theorem 2. For any two nonempty dimension partitions M1 and M2
such that M1∩M2 = /0,

z∗ [AP(M1 ,N)] + z∗ [AP(M2, N)] < z∗ [AP(M1∪M2, N)]

where M is the set of dimensions, N is the set of elements, and z∗ is the optimal value
of a given assignment problem.

Proof. FIX: The value of an assignment problem is the total cost of all disjoint
cliques in the solution set, and the value of a clique is the total cost of all the edges
in the clique. The edge sets of AP(M1 ,N) and AP(M2 ,N) are subsets of the edge set
of AP(M1∪M2 ,N) ofSuppose that we have the optimal solution z∗ If m = |�i Mi|
and mi = |Mi|, then

Since all edges going from one partition to another have to be cut, any two sub-
problems contain less cliques than the original assignment problem. Therefore, the
optimal solution of the original problem is a lower bound to the sum of the optimal
solutions of the subproblems..

(a)

Title Suppressed Due to Excessive Length 9

have to choose n×
�m

2

�
−2n×

�m/2
2

�
= n× m

2
2 edges from n2×

�m
2

�2 available edges.
Figure ?? shows the complete graph of AP(m,n) partitioned into two graphs of
AP(m/2,n).

(a) Two complete AP(m/2,n)’s (b) Feasible solution of two AP(m/2,n)’s

Fig. 4 Dimension Partition

Notice that combining the solutions from the two subproblems results in a total
of twelve disjoint cliques. The original MAP requires exactly six disjoint cliques.
We must somehow build a solution for a single AP(m,n) from the solutions from
two AP(m/2,n)’s. Theorem ??, where M is the set of dimensions and N is the set
of elements, gives a lower bound to the original MAP by combining the clique costs
from the two subproblems. This is a strict inequality because the solutions of the
partitions are not connected and is true regardless of how the dimension set M is
partitioned.

Theorem 2. For any two nonempty dimension partitions M1 and M2
such that M1∩M2 = /0,

z∗ [AP(M1 ,N)] + z∗ [AP(M2, N)] < z∗ [AP(M1∪M2, N)]

where M is the set of dimensions, N is the set of elements, and z∗ is the optimal value
of a given assignment problem.

Proof. FIX: The value of an assignment problem is the total cost of all disjoint
cliques in the solution set, and the value of a clique is the total cost of all the edges
in the clique. The edge sets of AP(M1 ,N) and AP(M2 ,N) are subsets of the edge set
of AP(M1∪M2 ,N) ofSuppose that we have the optimal solution z∗ If m = |�i Mi|
and mi = |Mi|, then

Since all edges going from one partition to another have to be cut, any two sub-
problems contain less cliques than the original assignment problem. Therefore, the
optimal solution of the original problem is a lower bound to the sum of the optimal
solutions of the subproblems..

(b)

Figure 4.3: Dimension Partitioning of an MAP with d = 6 and n = 6: (a) The dimen-

sion partitioning of an MAP(6,6) (b) The disjoint cliques in each of the partitions.

The reason is that in the solutions obtained from the partitions, the edges nec-

essary to convert the two groups of disjoint cliques into a feasible solution for the

original problem are not considered. Consequently, any solution obtained before the

conciliation step serves as a lower bound for the original problem.

4.3.2 Dimension Augmentation

The dimension augmentation method, which works in a similar fashion as the

element augmentation method, starts with solving an assignment problem with only

two dimensions considered. The remaining dimensions are iteratively added to the

subproblem, based on a predetermined sequence. The initial subproblem with only

2 dimensions is an instance of a linear assignment problem that can be solved in

www.manaraa.com

64

Procedure Dimension Augmentation Method

Input: an MAP(d,n), a sequence of dimensions σ = {d1, d2, . . . , dn}

1. Solve an LAP(2,n) on the first two dimensions d1 and d2

2. σ := σ \ {d1, d2}
3. for i = 3 to |σ|
4. Add di to the subproblem.
5. σ := σ \ {di}
6. Solve an LAP to determine an assignment of elements in di

to the edges in the solution from the previous step
7. Solve the new subproblem with the solution obtained from line 5

as an upper bound.
8. next i

Figure 4.4: The pseudo-code for the dimension augmentation method

polynomial time. When the optimal solution of the initial subproblem is obtained,

the third dimension from the predetermined sequence is added to the subproblem, to

create an instance of MAP(3,n), and a feasible solution for the subproblem, which is

suboptimal, is created by solving a linear assignment problem that determines the best

assignment between the edges from the solution of the previous step and the nodes in

the newly added dimension. The pseudo-code of the dimension augmentation method

is shown in fig. 4.4. These steps are repeated, and new dimensions are added to the

previous subproblem until all the dimensions in the original problem are included

in the subproblem. At that point an exact solution for the original problem can be

obtained.

www.manaraa.com

65

4.4 Numerical results

In order to examine the performance of the heuristic and exact methods described

in the current chapter, random instance of decomposable MAP were generated and

solved by each method. The methods were implemented in C++ and run on a

Windows machine with a 2.2 GHz CPU and 4GBs of RAM.

Instances of decomposable MAP with different cardinality (n) and dimensionality

(d) were randomly generated. The cost of the edges for graphs were iid uniform in

the range [0, 1]. Table 4.1 shows the result of the numerical experiments. The ex

index is used for the exact method based on the existing method used in chapter 2,

ea for the exact method based on the element augmentation, and da for the exact

method based on the element augmentation. As can be observed, the exact methods

based on augmentation methods are not very competitive with the existing methods.

This can be due to the fact that the heuristics add another complexity to the process

of decision making by introducing the orders by which elements or dimensions are

added (augmented) to the base problem.

www.manaraa.com

66

T
ab

le
4.

1:
C

om
p
u
ta

ti
on

al
re

su
lt

an
d

ob
ta

in
ed

co
st

fo
r

th
e

ex
ac

t

an
d

h
eu

ri
st

ic
m

et
h
o
d
s

fo
r

M
A

P

n
d
|V
|
|E
|

|S
|

ti
m
e e
x

co
st
ex

ti
m
e e
a

ti
m
e d
a

3
3

9
27

36
0.
00

2
1.
92

8
0.
01

8
0.
0
35

4
3

12
64

57
6

0.
00

8
3.
46

8
0.
04

1
0.
1
43

5
3

15
12

5
14

40
0

0.
01

5
3.
32

2
0.
11

2
0
.2
2

6
3

18
21

6
51

80
00

0.
05

6
3.
42

0.
25

6
0.
5
31

7
3

21
34

3
2.
5e
7

0.
27

3
3.
81

1
0.
46

9
0
.9
5
9

8
3

24
51

2
1.
6e
9

0.
93

5
5.
52

4
6.
21

5
2
.7
4

9
3

27
72

9
1.
3e
11

6.
36

8
5.
54

9
64

.0
22

39
.2
4
1

10
3

30
10

00
1.
3e
13

9.
25

1
5.
50

2
16

.0
12

14
7.
3
04

11
3

33
13

31
1.
6e
15

32
.9
42

5.
56

9
10

4.
25

5
4
72

.9
8
9

12
3

36
17

28
2.
3e
17

12
2.
46

5
6.
09

5
12

87
.6
45

7
46

.0
3

3
4

12
81

21
6

0.
00

9
3.
78

3
0.
09

4
0.
1
76

4
4

16
25

6
13

82
4

0.
35

1
4.
70

7
2.
33

9
3.
3
63

5
4

20
62

5
1.
7e
5

0.
87

3
5.
01

4
6.
99

9
15

.8
8
2

6
4

24
12

96
3.
7e
8

3.
98

8
5.
36

3
13

.7
39

1
1.
9
43

7
4

28
24

01
1.
3e
11

67
.0
49

6.
71

1
31

8.
35

8
14

06
.6
8
5

3
5

15
24

3
12

96
0.
04

6
4.
44

0.
13

7
0.
6
55

4
5

20
10

24
33

17
76

4.
59

9
1.
42

3
14

.8
07

5
7.
5
56

www.manaraa.com

67

CHAPTER 5
A BIT PARALLEL MAXIMUM CLIQUE ALGORITHM BASED ON

MAXSAT

5.1 introduction

In this chapter we will review some of the methods available to solve the maxi-

mum clique problem (MCP) and finally offer a new method based on the algorithm

proposed in Li & Quan [46]. The chapter concludes by presenting the result of com-

putational experiments.

Consider an undirected graph G = (V,E) where V is an ordered set of n vertices

denoted by {v1, . . . , vn}, and E is a set of m edges . A clique C in G is defined as

a complete subgraph in G. The maximum clique problem (MCP) consists of finding

the clique in G with the largest cardinality. The size of the largest clique in G is

denoted by ω(G).

The methods to solve the maximum clique problem are divided into two groups:

The heuristic methods and the exact methods. Among the heuristic methods, we have

the sequential greedy heuristics that generate a maximal clique by iteratively adding or

removing a vertex from a set that is not a clique, based on certain indicators associated

with candidate vertices [33]. Sequential greedy heuristics only find a single maximal

clique, and once one is found the algorithm stops. Clearly, the obtained solution is

not guaranteed to be optimal. Local search heuristics expand this idea by searching

the neighborhood of a maximal clique to possibly improve it. Depending on the type

of neighborhood, different local search algorithms can be invented. k-interchange

www.manaraa.com

68

heuristics are a well-known class of local search heuristics. The complexity of a k-

neighborhood local search is O(nk) where n is the size of the solution upon which the

local search is being performed and k is the size of neighborhood [35]. Another type of

heuristic methods for the maximum clique problem is the stochastic methods, usually

inspired by a natural phenomenon, that try to avoid the local minima. Example of

such methods are the simulated annealing method [11], genetic algorithm [59], scatter

search [19], and ant colony optimization [24].

Branch and bound methods are one of the successful exact methods used to solve

the maximum clique problem [69, 70, 65].

Let’s use the following notations that are based on the definitions in chapter ??

to describe branch and bound methods for MCP: Q is the currently growing clique,

Qmax is the largest maximal clique found so far (when the algorithm terminates, Qmax

will contain a maximum clique of the graph), R is the candidate set, the list of nodes

that are adjacent to all the nodes in Q and can be used to extend it.

A very basic maximum clique algorithm tries to list all maximal cliques in the

graph by adding or removing nodes to/from Q, and repeating this loop until it finds

a maximal clique that can be proved to be the maximum clique. Figure 5.1 shows

MaxClique, a very basic maximum clique algorithm. In MaxClique search is done in

the graph space. Sets Q and Qmax are globally maintained. MaxClique starts with

Q = ∅ and R = V . At each iteration, a node is added to or removed from Q until it

is verified that the largest maximal clique (the maximum clique) is found. The set of

candidate vertices R at each iteration, comprises all the nodes that are adjacent to

www.manaraa.com

69

all the nodes in Q:

R = {vi|(vi, vj) ∈ E,∀vj ∈ Q}

In each iteration, MaxClique selects a node v ∈ R, and adds it to Q. MaxClique

then computes the updated candidate set R′ by removing nodes from R that are not

adjacent to v. It then checks the pruning condition (line 5) by checking whether the

current growing clique Q is probable to unset the best maximal clique so far Qmax.

The pruning condition simply checks to see if the updated candidate set has enough

number of nodes in it to possibly grow larger than Qmax:

UP = |Q|+ |R|

Later on, it will be shown how UP can be tightened to improve the quality of

MaxClique.

As an example, consider the graph shown in figure 5.3. MaxClique, starts by

ordering the nodes based on their degree in an ascending order. The result will be

the sequence: {v3, v1, v2, v4, v5, v6}, which will be copied to set R. Node v3 as the node

with the highest degree is then added to the partial solution: Q = {v3}. The nodes

that are not adjacent to v3 are removed from R: R = {v1, v5, v6}. The upper bound

for the current subproblem is set to be UP = |Q|+ |R| = 4. For an intermediate step,

if the calculated upper bound is smaller than the largest maximum clique found up to

that point, the subproblem will be fathomed. Otherwise, the algorithm continues by

branching deeper in the branch and bound tree and adding the node with the largest

www.manaraa.com

70

Procedure MaxClique (R)
1. while |R| > 0
2. select node v ∈ U
3. R := R \ {v}
4. R′ := R \ C(v]
5. if |Q|+ |R′| > |Qmax| then
6. Q := Q ∪ {v}
7. MaxClique (R′)
8. Q := Q \ {v}
9. else if |Q| > |Qmax| then
10. Qmax := Q
11. wnd If
12. end while

Figure 5.1: A very basic maximum clique algorithm

(original) degree to Q. In our example, MaxClique proceeds with adding node v1 to

Q:

Q = {v3, v1}.

Consequently, the nodes in R that are not adjacent to v1 are removed and we will

have:

R = ∅,

which implies that a maximal clique is found. At this point Qmax will be updated by

copying the nodes in Q into it:

Qmax = {v3, v1}.

To important decisions in any maximum clique branch and bound are:

1. how to select the node to branch on

2. how to calculate the upper bound

www.manaraa.com

71

Procedure MCQ(R,C)
1. While R 6= ∅
2. select node v with maximum color C(v) from R ;
3. R := R \ {v};
4. if |Q|+ C(v) > |Qmax| then
5. Q := Q ∪ {v}
6. if R′ = R ∩NU(v) 6= ∅ then
7. generate a vertex coloring C of G(R′)
8. MCQ(R′, C)
9. Q =: Q \ {v};

10. elseif |Q| > |Qmax| then Qmax := Q
11. endif
12. end while

Figure 5.2: MCQ algorithm

Most of the improvements on the basic maximum clique algorithm are based on

modifications regarding these two decisions.

Österg̊ard [53] proposed an alternative method for selecting the nodes from the

candidate set that was different that the one proposed in 5.1. Given a graph G(V,E),

where V is a set of ordered vertices, i.e. V = {v1, v2, . . . , vn}, the algorithm itera-

tively finds the maximum clique for subgraphs Vn = {vn}, Vn−1 = {vn−1, vn}, Vn−2 =

{vn−2, vn−1, vn}, . . . , V1 = {V }, the last subgraph being the original graph. The idea

is that by solving the smaller subgraphs, better bounds can be found for the larger

subgraphs.

The coloring problem in graph theory asks to find the minimum number of colors

required to color the nodes in a given graph G such that no two adjacent nodes are

assigned the same color. The minimum number of colors required to color the nodes of

a graph is denoted by χ(G). Basically, the graph coloring problem (GCP) partitions

www.manaraa.com

72

the vertices of graph G into the minimum number of independent sets.

One should note that not all the nodes in the candidate set R can in fact be

added to the current clique Q simultaneously, and that the upper bound (|Q|+ |R|)

is a loose overestimation. This upper bound can be improved if we subject R to a

graph coloring algorithm. The output of the graph coloring algorithm is the minimum

number of independent sets P needed to cover nodes in the induced subgraph G[R].

This value is called the Chromatic number of a graph G, and is denoted by χ(G).

Obviously, a clique cannot contain more than a node from each independent set from

R. Thus, a tighter upper bound can be achieved by using |Q|+ |P |, where P ≤ R is

a coloring of R and |P | is the minimum number of colors needed to cover the nodes

in graph G. However, it is well-known that the graph coloring problem is NP-hard.

Thus, to establish a trade-off between the complexity of solving the graph coloring

problem and tighter upper bound, instead of exact graph coloring methods, most

branch and bound algorithms use a graph coloring heuristic instead. This idea is

used in [69].

The resulting algorithm is obtained by replacing the pruning condition (line 5)

in 5.1 with:

|Q|+ |P | > |Qmax|,

.

The algorithm in [69], hereafter referred to as MCQ, uses an approximate coloring

method to assign a positive value (color) C(v) to each vertex in V with the following

www.manaraa.com

73

properties:

• If (vi, vj) ∈ V then C(vi) 6= C(vj).

• C(v) = 1, or if C(v) = k > 1, then there exists v1 ∈ N(v), v2 ∈ N(v), . . . , vk−1 ∈

N(v) in R such that C(v1) = 1, C(v2) = 2, . . . , C(vk−1) = k − 1.

The value C(v) represents the largest possible extension in the size of the current

growing clique Q, if node v is added to it. This graph coloring heristic method is

used in several other maximum clique branch and bound methods.

In the beginning of the algorithm, MCQ sorts the nodes based on their degree

in an descending form and copies them into set R. The relative order of the nodes

in subsequent iteration of the algorithm is modified to be based on their C(v) value.

The idea, inspired by the observations in [53], is that since:

ω(U) ≤ max{C(v)|v ∈ U}, (5.1)

if |Q| + max{C(v)|v ∈ R} ≤ |Qmax| holds for a subproblem, all the nodes in

the subproblem can be disregarded, and the whole subproblem can be fathomed (as

opposed to a single node). The order of nodes in each subproblem is determined from

the colors obtained in the previous recursion. Consequently, in MCQ, the next node

to be added to Q is node vi where:

i = arg max{C(vi)|(vi) ∈ R}.

In other words, the next node to add to Q, has the largest color number in R.

In their experimental results they showed that their method outperforms the method

www.manaraa.com

74

in [53] in most of the DIMACS benchmark instances. Ideally, it is desired to sort

nodes descendingly based on their degree and assign color number to them such that

a high-degree node gets a smaller color number. MCQ deviates from this by sorting

nodes based on their color number.

As an example of how the graph coloring method in [69] works, consider the

graph in fig. 5.3. For illustration purposes, lets denote by Ci all the nodes that are

assigned color i (color class i). If we sort the nodes based on their degrees (in the

beginning of the algorithm), we will obtain the set V = {v[3]
3 , v

[2]
1 , v

[2]
2 , v

[2]
4 , v

[2]
5 , v

[1]
6 },

with the numbers in brackets being the degree of the nodes. The graph coloring

method starts with node v3, assigns it the color class 1, checks node v1, assigns it

the color class 2 (since nodes v1 and v3 are adjacent), and so on. The final results

for the color classes will be: C1 = {v3, v2}, C2 = {v1, v4, v6}, C3 = {v5}. Nodes

are copied into the candidate set R in the same order that they appear in the color

classes: R = {v3, v2, v1, v4, v6, v5}. Notice that

C(vi) = k ⇐⇒ vi ∈ Ck.

Also note that the order of nodes in R has changed compared to the initial ordering

based on degree. This will have a cascading effect on the coloring method. As the

algorithm proceeds, it will deflect more from the ideal of assigning lower colors to

nodes with higher degrees.

Also, since ω(G) ≤ ∆ + 1, with ∆ being the largest degree among the nodes in

G:

www.manaraa.com

75

∆ = max{deg(vi)|vi ∈ V },

MCQ never assigns a color larger than ∆ + 1 to any node.

For the graph in our example, node v5 will be considered for inclusion in Q. The

largest extension to the size of Q by adding v5 is equal to C(v5) = 3 and an upper

bound for the current subproblem can be computed as UB = |Q|+C(v5) = 0+3 = 3.

Again, for an intermediate subproblem, if this UB is less than the size of an already-

found maximal clique, this subproblem can be fathomed. Otherwise, MCQ proceeds

with updating R, assigning color number to the nodes in the updated R, and adding

a new node to Q.

v1

v2 v3

v4 v5

v6

Figure 5.3: An imperfect graph with χ(G) = 3 and ω(G) = 2

In a new algorithm called MCS [70], Tomita et al. proposed two improvements

over MCQ. The first improvement was the order by which nodes are fed into the

approximate coloring method. As mentioned in the previous section, in MCQ, nodes

www.manaraa.com

76

are ordered based on their colors in the previous iteration. In MCS, an approach is

used to feed the vertices to the approximate coloring method based on their degree

in the original graph.

They also proposed a recoloring method that works on top of the approximate

coloring as follows: A new parameter called the threshold color Cth := |Qmax|−|Q|+1

is defined. Cth is the minimum color for a node to be promising. If a node v is assigned

a color higher than or equal to Cth, a recoloring procedure will be called to attempt

to assign a lower color to this node and make it non-promising. Define Ci as the set

of all nodes with color equal to i (color class i). The recoloring procedure on node v

tries to find a vertex w in N(v) such that C(w) = k1 ≤ Cth with |Ck1| = 1. If such w

is found, then the procedure attempts to find k2, where k1 < k2 < Cth, such that no

vertex in N(w) has color k2. If such number k2 is found, then the procedure changes

the color of v and w such that C(v) = k2 and C(w) = k1. If any of this steps fails,

C(v) remains unchanged. But if all these steps are successfully performed, C(v) will

be changed to k1 ≤ Cth; thus it will be deemed non-promising and it is no longer

necessary to search from v. MCS proved to be a very competitive method for the

maximum clique problem.

In [36], in an algorithm referred to as MaxCliqueDyn, 2 modifications over [69]

were proposed . The first modification was based on the observation that no node

with a color number larger than Cth can save their original order in set R. This will

make the order of nodes in R to be closer to their order obtained from sorting them

based on their degree. The second modification was that they realized a tighter upper

www.manaraa.com

77

bound can be obtained if the degree of nodes in subproblems in specific levels of the

branch and bound tree were updated, based on the nodes existing in that particular

subproblem, and fed into the graph coloring heuristic. Their computational result

showed improvements over the MCQ method.

San Segundo etal. [65] proposed an exact bit-parallel method for the maximum

clique problem. Their main contribution was to change the framework of the basic

maximum clique branch and bound (Fig. ??) by using bitsets as the data structure.

Bitsets are explained in section 3.2.1. Using bitsets enables the process of updating

the candidate set (line 6 in MCQ) to be performed more efficiently using the logical

AND operator, which on average is done in one CPU instruction. The requirement

for this is that the adjacency matrix of the graph as well as the candidate set R

are stored in the memory of the computer using bitsets. They, later on, extended

their algorithm in [65] to incorporate the recoloring method proposed in [70] in their

bit-parallel framework. The resulting algorithm is one of the fastest maximum clique

algorithms currently available.

Most branch-and-bound methods for the maximum clique problem use graph

coloring heuristics to partition a graph into P independent sets to obtain an upper

bound for a subproblem. For a perfect graph G, not only χ(G) = ω(G), but also for

any induced subgraph G′ we will have χ(G′) = ω(G′). So heuristic graph coloring

methods seem suitable to obtain an upper bound for a subproblem in perfect graphs.

However, in case of an imperfect graph, the upper bound obtained from the graph

coloring method may not be very tight. Based on this concept, in [46], authors

www.manaraa.com

78

propose a new encoding for the maximum clique problem into MaxSAT, and use the

techniques used in MaxSAT solvers on top of graph coloring heuristics to improve

the upper bound obtained. Their proposed algorithm proved to be one of the fastest

maximum clique algorithms, able to solve several open DIMACS instances.

A boolean satisfiability problem (SAT) is the problem of determining whether

the variables of a given boolean formula can be assigned in such a way as to make

the formula evaluate to true. A SAT formula is usually represented in CNF1, which

is the representation of the formula as a conjunction (logical AND, denoted by ∧) of

clauses, where a clause is a finite disjuction (logical OR, denoted by ∨) of literals. A

literal is variable that can be either true or false.

As an example for CNF consider the following:

• a

• ā

• (a ∧ b)

• (a ∧ b) ∨ (a ∧ c̄)

A literal is satisfied if it is set to true, if it is in positive form, or false, if it is

in negated form. A clause is satisfied if at least one if its literals is satisfied. A CNF

is satisfied if all its clauses are satisfied simultaneously. If there is no assignment of

variables to make the formula evaluate to true, the formula is unsatisfiable. As an

example, consider a ∧ b where ∧ is the logical (=bitwise) AND operator. Boolean

variables a and b are called literals. This formula is satisfiable, since one can assign

1Conjunction Normal Form

www.manaraa.com

79

a = true and b = true. However, (a ∧ b) ∧ a is not satisfiable, because there are no

values for a and b that would simultaneously satisfy both (a ∧ b) and a.

Consider the following CNF formula:

(l1 ∨ l2) ∧ (l1 ∨ l3) ∧ (l2 ∨ l4) (5.2)

First note that each clause is made of ∨ operators and the whole formula is a

combination of conjunctions of clauses, which results in the formula being in CNF

form. The CNF in (5.2) is satisfiable because we can assign l1 = true, l2 = true,

l4 = false. l3 can take both true or false values because the second clause will be

evaluated to true since l1 = true.

A MaxSAT problem is a type of boolean satisfiability problem where the set of

clauses are divided into hard and soft clauses. The goal in the MaxSAT problem is

to find an assignment for the boolean variables that satisfy all the hard clauses while

maximizing the number of satisfied soft clauses.

The traditional way to encode a Maximum Clique problem into a MaxSAT prob-

lem is to introduce a boolean variable xi for each vertex vi ∈ V . xi = 1 i.f.f v is in

the maximum clique. A hard clause xi ∨ xj is added for every pair of vertices vi and

vj which are not connected ((vi, vj) /∈ E). Every assignment satisfying hard clauses

will be a clique2. The hard clauses prevent nodes that are not adjacent to be in the

same clique. That is because satisfying a hard clause xi ∨ xj will require at least one

of the variables xi or xj to be false, and thus they both cannot coexist in a clique. In

2Remember that a clique is a subset of nodes in V that are pairwise adjacent

www.manaraa.com

80

order to find the largest clique contained in G a soft clause xi is added to the set of

clauses per each vertex in V . Maximizing the number of satisfied soft clauses while

satisfying all the hard clauses results in a maximum clique.

As an example, consider the simple graph shown in figure 5.3. The Max-

SAT based encoding for the maximum clique for this graph consists of 6 literals

x1, x2, . . . , x6. The set of hard clauses are:

{x1 ∨ x4, x1 ∨ x5, x2 ∨ x3, x2 ∨ x5, x3 ∨ x4, x1 ∨ x6, x2 ∨ x6, x4 ∨ x6, x5 ∨ x6} (5.3)

and the set of soft clauses are:

{x1, x2, x3, x4, x5, x6} (5.4)

In [46], a new encoding for the maximum clique problem is proposed that is

based on the result of the graph coloring heuristic.

Definition 5.1.1. Let G be a graph partitioned into independent sets, the indepen-

dent set based Max-SAT encoding of Max Clique is defined as follows:

• each vertex vi in G is represented by a boolean variable xi,

• a hard clause xi∨xj is added for each pair of non-adjacent vertices (vi, vj), and

• a soft clause is added for each independent set which is a logical or of the

variables representing the vertices in the independent set (color class).

The traditional way of encoding the maximum clique into MaxSAT is a particular

case of Definition 5.1.1 where each independent set contains only one vertex. So if we

partition3 the graph in fig. 5.3 into 3 independent sets {v1, v4, v6}, {v2, v3}, and {v5},

3Note that any graph coloring method can be used to do the partitioning.

www.manaraa.com

81

an independent set based MaxSAT encoding for the maximum clique will have:

{x1 ∨ x4, x1 ∨ x5, x2 ∨ x3, x2 ∨ x5, x3 ∨ x4, x1 ∨ x6, x2 ∨ x6, x4 ∨ x6, x5 ∨ x6}

as the hard clauses and

{x1 ∨ x4 ∨ x6}, {x2 ∨ x3}, {x5}

as the soft clauses. Considering the hard clauses, any satisfied soft clause will not

have more than one true literal, and the corresponding independent set for the soft

clause will have only one vertex in the clique in any assignment satisfying the hard

clauses. There are different graph coloring heuristics and each of them will possibly

result in a different Max-SAT encoding of the maximum clique problem for a given

(sub)graph. The authors conclude that the best method in terms of complexity and

number of independent sets is the heuristic method explained in [69].

Unit Propagation (UP) is one of most commonly used techniques in Max-SAT

solvers to detect disjoint inconsistent subset of soft clauses. A subset of soft clauses

is called inconsistent if it results in a contradiction (empty clause) when considered

with the set of hard clauses. A unit clause is a clause that contains a single literal.

Given a CNF with unit clause l, the CNF will be satisfiable if and only if l = true.

Considering this, unit propagation consists in the following two steps:

• all the clauses containing l will be removed, because they are automatically

satisfied.

• l will be removed from any clauses containing it, because l cannot be used to

satisfy the clause.

www.manaraa.com

82

If after performing unit propagation, an empty clause is resulted, a contradiction

has occurred, or equivalently, a disjoint inconsistent subset of soft clauses is detected.

Also, if in the process, another unit clause is created, unit propagation can be per-

formed with the newly found unit clause to find more contradictions. A literal l is

called failed if when it is satisfied and l removed from other clauses, an empty clause

is resulted. Every literal in soft clauses is checked to see if it is failed. Given a soft

clause c = l1 ∨ l2 ∨ . . . ∨ lt, if every li, i = 1, 2, . . . , t is a failed literal, the union

of all the soft clauses used to produce an empty clause for every li, together with c,

constitute an inconsistent subset.

They then state the following proposition:

Proposition 5.1.2. Let ω(G) denote the cardinality of a maximum clique of a graph

G. If G can be partitioned into k independent sets, and there are s disjoint inconsistent

subsets of soft clauses in the independent set based MaxSAT encoding, then ω(G) ≤

k − s.

Consider the independent set based Max-SAT encoding of the graph in the fig.

5.3. A traditional maximum clique solver would use UB = 3 as an upper bound on

ω(G):

ω(G) ≤ 3

.

However, as can be shown, x5 is a failed literal, and thus a tighter bound on

ω(G) can be obtained:

www.manaraa.com

83

If we set x5 = 1 (a boolean variable set as 1 is interpreted as true), x5 will

be removed from the hard clauses , resulting in three new unit clauses implying

x1 = x2 = x6 = 0. Then, x1 and x6 are removed from the first soft clause and x2

from the second soft clause, making the second soft clause a unit clause. So x3 and x4

should be assigned 1 to satisfy their respective clause, making the hard clause x3∨x4

empty. So x5 is a failed literal and the three soft clauses used in the propagation

to produce the empty clause constitute an inconsistent subset. This enables use to

improve the upper bound from 3 to 2.

5.2 BitMSClique

In this section we will explain a new maximum clique, referred to as BitMSClique

, which is based on the method in [46] and also uses the bitset structure similar to

[65]. We will use the notation introduced in chapter 3.

The first modification in BitMSClique is to use the unit propagation exploited in

[46] in a bit-wise framework proposed in [65]. Unit propagation will be used to assing

a coloring number to individual nodes, rather than obtaining an upper bound on the

size of ω(G). This enables us to consider only a part of graph G, when performing

unit propagation, which is hoped to bring about improvement in the computational

time. In [46], authors use a normal data structure for the maximum clique problem.

The second modification in BitMSClique is the use of bitsets as data structures to

update the candidate set in each iteration.

A color assigned to each vertex is nothing but the largest possible extension in the

www.manaraa.com

84

size of the currently growing clique if nodes are to be added to the currently growing

clique in a decreasing order of color numbers. In the new algorithm, an attempt will

be done to use unit propagation simultaneously with the graph coloring heuristic,

as opposed to after the graph coloring methods, to assign numbers to nodes in each

subproblem. This may result in cases where the number assigned to the vertices are

smaller than the index of the color class they belong to.

Specifically, in the new proposed algorithm, hereafter referred to as BitMSClique

, the adjacency matrix of graph G(V,E), A(G), as well as the candidate set R are

stored using a bitset data structure. Before the call to BitMSClique (R,C), All the

bits in R are set to 1 and the numbers for the vertices are assigned using the method

explained in [69].

Row i of A(G), denoted by Ai(G) is a bitset of size |V | = n. At each iteration,

BitMSClique adds a vertex v from the candidate set R to the currently growing clique

Q. Then, the new candidate set will be computed using bitwise operator AND:

R′ = R ∧ Av(G)

.

If the new candidate set R′ = ∅ is empty (=contains no significant bits), a leaf

node in the branch and bound tree is reached, or equivalently, a maximal clique in

G is found. Qmax will be updated if the new maximal clique is larger. Otherwise,

the algorithm backtracks. On the other hand, if R′ 6= ∅, the NewColoring procedure

is applied to assign colors (numbers) to each node in R′. After the numbers are

assigned, BitMSClique will create a new subproblem and NewMaxClique(R′, C ′) will

www.manaraa.com

85

Procedure BitMSClique (R,C)

1. while R 6= ∅
2. select a vertex v from R
3. R := R \ v
4. if |Q|+ C(v) > |Qmax| then
5. Q := Q ∪ {v}
6. if R′ = R ∩ Av(G) 6= ∅ then
7. NewColoring(R′, N ′)
8. BitMSClique (R′, N ′)
9. elseif then

10. Qmax := Q
11. end if
12. Q := Q \ {v}
13. endif
14. end while

Procedure NewColoring(U,C)
2. while R 6= ∅
3. select the first vertex from v ∈ U
4. while (Ck ∩ C(v]) 6= ∅

k++
end while

4. Ck := Ck ∪ {v}
6. C(v) = UP(v, C1, . . . , Ck) {perform unit propagation}
8. end while

be called.

UP in the NewColoring procedure is where we perform the unit propagation

to determine the final color number that should be assigned to a clique. The color

classes C1, . . . , Ck are used as the soft clauses in the process. The color assigned to a

node after unit propagation is less than or equal to the color number assigned by the

graph coloring heuristic.

www.manaraa.com

86

Consider again the graph in fig. 5.3. BitMSClique starts by setting Q = ∅

and R = 111111. The sequence of nodes sorted based on their degree will be:

{v3, v1, v2, v4, v5, v6}. Based on this sorted order, the first bit in R is corresponds

to node v6, the second bit corresponds to node v5 and so on. The adjacency ma-

trix can also be reconstructed (permuted in rows and columns) to reflect this new

mapping.

BitMSClique then proceeds by performing the graph coloring heuristic to assign

color numbers to nodes in R. The resulting colors will be:

C(v3) = 1;

C(v1) = 2; since (v1, v3) ∈ E

C(v2) = 1;

C(v4) = 2; since (v2, v4) ∈ E

C(v5) = 3; since (v3, v5) ∈ E and (v4, v5) ∈ E

C(v6) = 2; (v3, v6) ∈ E

However, using the NewColoring, The numbers assigned to each node will be:

step 1) C(v3) = 1;

Step 2) C(v1) = 2;

Step 3) C(v2) = 1;

Step 4) C(v4) = 2;

Step 5) C(v5) = 2;

Step 6) C(v6) = 2;

www.manaraa.com

87

Note that the NewColoring procedure assigns C(5) = 2, as opposed to C(5) = 3

for the traditional coloring. The reason behind it is that if we create the MaxSAT

instance of the nodes that are numbered up to step 5 the soft clauses will be:

{(v3 ∨ v2), (v1 ∨ v4), v5}

with hard clauses:

{(v1 ∨ v4), (v1 ∨ v5), (v2 ∨ v5), (v2 ∨ v3), (v3 ∨ v4)}

After setting v5 = 1, we should have v1 = v2 = 0, which converts the first soft

clause into the unit clause (v3, and the second soft clause into the unit clause (v4).

Repeating the unit propagation again with node v4 and setting it to true forces us to

set v3 = false which creates an empty clause. Thus, v5 in this encoding is a failed

literal and its assigned number will be 2, instead of 3.

BitMSClique then proceeds by adding node v6 to Q, and updating the candidate

set by performing a logical AND operation:

R′ = 111111001000 = 001000.

In the next iteration, node v3 (the only significant bit in R′) will be added to Q

and a maximal clique is found v6, v3. At this point, BitMSClique can terminate as it

is obvious from the numbers assigned to nodes that a maximal clique if size 2 is also

maximum.

www.manaraa.com

88

Table 5.1: Time spent to find the maximum clique in random
graphs of different size

|V | CLQ BitMSCLQ MaxCliqueDyn

20 5.35 0.001 0.013
50 7.4 0.005 0.017
100 9.15 0.076 0.013
150 10.2 0.472 0.013
200 11 1.985 0.027
250 11.3 7.918 0.061
300 12.05 21.527 0.121
350 12.35 83.532 0.28
400 12.9 180.016 0.572
450 13.05 361.821 1.091
500 13.1 669.32 2.3

5.3 Experimental results

BitMSCLQ was implemented in C++ and used to solve random graphs of differ-

ent size. The code was run on a windows machine with a 2.2 GHz CPU and 4 GB of

ram. For the sake of comparison, the same problems were solved by MaxCliqueDyn

[36]. Table 5.1 shows the computational time to solve the graphs of each size. For

each size reported in the table, the computational time reported is averaged over 20

instances.

BitMSCLQ outperforms MaxCliqueDyn in instances of size up to 50. But its per-

formance degrades significantly as the size of the graph increases beyond 50. Problems

in the SAT family have been the subject of extensive research and studies. Unfor-

tunately, the implementation of algorithms to solve SAT problems are not usually

publicly available. This was the case for the method in [46] also. The implementa-

tions usually contain considerable amount of optimization, without knowing which,

replicating or contributing to the result of an algorithm will be difficult.

www.manaraa.com

89

CHAPTER 6
RISK-AVERSE MAXIMUM CLIQUE PROBLEM

6.1 Introduction and motivation

In this chapter, we study the minimum-risk, maximum clique problem. An

inherent part of most networks in real life is the uncertainties encountered in the

network components. These uncertainties are observed in several shapes and can

lead to infeasibility/suboptimality of the otherwise optimal network decisions, and

incur unexpected costs or losses. Stochastic factors in network optimization problems

have been the subject of several studies in different fields such as operations research,

industrial engineering, computer science, and geographic information systems.

Although most traditional stochastic network models consider stochasticity as-

sociated to network arcs, in this work, we consider network problems with stochastic

factors associated with the nodes in the network. We will present a mathematical for-

mulation of the risk-averse maximum clique problems, and then show how in certain

situations, the optimal solution of the problem corresponds to a maximal clique in

the underlying graph representing the network. We will also provide a combinatorial

optimization approach to solve the problem.

Give a graph G = (V,E) with the node set V and the edge set E, where each

node i ∈ V has an associated random variable Xi representing cost or loss, with a

known joint distribution of Xi’s, with a given risk measure ρ, the problem of finding

the minimum-risk subgraph of G with a prescribed property Q can be depicted by

www.manaraa.com

90

the following mathematical program:

min
S⊆V (G), w

ρ

(∑

i∈S

wiXi

)

s. t.
∑

i∈S

wi = 1

wi ≥ 0, i ∈ V

S[G] ∈ QG,

(6.1)

where S[G] is the subgraph induced 1 by a subset S of nodes V (G), and QG is the set

of all subgraphs of G with the desired property Q. In this chapter, we are interested

in complete subgraphs, or cliques, in G:

QG = {S ⊆ V (G) | ∀i, j ∈ S : (i, j) ∈ E(G)}. (6.2)

The objective function in 6.1 represents the risk associated to the subgraph. The

variables wi in (6.1) represent the weights based on which vertices of the minimum-risk

induced subgraph of G are selected.

The presence of wieghts in 6.1 can be motivated in a network where each node

contributes to the overal risk of the system. As an example, consider a network

with nodes representing sensors that output information of uncertain quality. The

edges connecting sensors (nodes) enable them to share information and potentially

enhance the output of the system. In such a system, the weights can represent a

source (e.g. money or energy) that is needed to keep a sensor alive, such that the risk

of information loss in the system is minimized. This situation can be formulated as

1An induced subgraph ofG(V,E) has the same set of edges that appear inG over V ′ ⊆ V .

www.manaraa.com

91

the aforementioned risk averse maximum clique problem.

The risk-averse (or minimum risk) maximum clique problem is introduced in

[63]. The problem seeks to find the largest clique of certain property, contained in

an undirected graph that represents a network with random variables, with a known

joint distribution associated to each vertex. Some of the studies in the literature,

that also consider stochasticity associated to nodes are discussed here briefly. The

influence of long term demand uncertainties in a network system is confirmed in a

study by Ukkusuri and Mathew [71]. They compared traffic network design prob-

lems (TNDP) with uncertainties with their deterministic counterpart, and proposed

a method based on Genetic Algorithm to provide a robust solution. Atamturk and

Zhang [5] developed a novel methodology to solve network problems entailing uncer-

tain network demands, based on a two-stage stochastic optimization model. In their

method, decisions were deferred until the demand was materialized. Glockner and

Nemhauser [26] studied a dynamic network flow problem with random capacities rep-

resented on arcs. Their method is based on a multistage stochastic linear program.

They propose other applications focusing on cases where flow through the network is

affected by uncertainties attributed to arcs. Several studies examined the effects of

stochastic arc failures on networks. Aneja et al. [2] analyzed flow patterns that max-

imize residual flow under probabilistic arc failure. Verweij et al. [73] used a sample

average approximation method to solve several two-stage stochastic routing problems

subject to arc failures and unexpected delays. Boginski et al. [9] and Sorokin et al.

[67] proposed a mathematical programming approach minimizing flow losses through

www.manaraa.com

92

a network by capturing the impact of probabilistic arc failures relative to conditional

expectation of worst-case outcomes.

6.2 Risk measures in stochastic programming

Risk is a subjective assymetric phenomenon involving exposure and uncertainty.

Subjective, in that, different methodologies define the same situation to have different

risks. assymetric, because it is considered for losses or costs only. The first step to

recognize risk is to quantify it. Given the probability space (Ω,F ,¶), the risk measure

associated with a random outcome X is denoted by ρ(X) and is defined as a mapping

ρ : X → R, where X is a space of bounded F−measurable functions X : Ω 7→ R.

In what follows, it is assumed that X represents a cost or a loss, whereby its larger

realizations are considered “riskier”.

Risk measures are usually selected based on the context and the application. The

context in which the risk measure is used in usually calls for the presence of certain

properties of the risk measure. This however, may lead to inappropriate selection of

risk measures. A notorious example is the VaR (Value-at-Risk), which is widely used

in financial institutions. VaR with the confidence level α ∈ (0, 1)is defined as:

VaRα(X) = inf{η | ¶[X ≤ η] ≥ α}, (6.3)

which is equal to the α-quantile of the loss distribution. VaR is an estimation

of the loss with a confidence level for a certain time period. The most significant

drawback of using VaR to measure risk is that VaR is a non-convex function and is

www.manaraa.com

93

non-sub additive (explained later), thus, does not account for the risk reduction via

diversification which is a fundamental principle of risk management.

Recent studies in risk theory, pioneered by Artzner et al. [4] identified four prop-

erties, or axioms, that a ”good” risk measure should possess. These four properties

are: monotonicity, sub-additivity, positive homogeneity, and transitional invariance.

Any risk measure possessing these properties is identified as a coherent risk measure.

Monotonity is expressed mathematically as:

(A1): X ≤ 0⇒ ρ(X) ≤ 0 for all X ∈ X ,

which ensures that based on the selected risk measure, lower losses have lower

risks.

Sub-additivity, which is one of the fundamental pillars of risk management theory,

expresses the idea of risk reduction through diversification. In mathematical terms,

sub-additivity is formulated as:

(A2): ρ(X + Y) ≤ ρ(X) + ρ(Y) for all X, Y ∈ X

Based on the positive homogeneity property, the risk for a loss, scales linearly

for any positive weight:

(A3): ρ(λX) = λρ(X) for all X ∈ X and λ > 0

and finally, the transitional invariance property implies that constant changes in

X affect the associated risk by the same amount:

(A4): ρ(X + a) = ρ(X) + a for all X ∈ X and a ∈ R

Note that as long as the positive homogeneity property holds, the sub-additivity

property can be substituted by the convexity axiom:

www.manaraa.com

94

(A2′) convexity: ρ(λX + (1 − λ)Y) ≤ λρ(X) + (1 − λ)ρ(Y) for all X, Y ∈

X , λ ∈ [0, 1]

The convexity property, allows for the utilization of efficient mathematical meth-

ods to optimize the risk using a coherent measure.

It is important to notice that the above axiomatic definition for coherent risk

measures does not provide a functional form of coherent risk measures. Krokhmal

[41], proposed a representation of coherent measures of risk as a convolution of some

function φ : X 7→ R that satisfies (A1)-(A3), which is a lower semicontinuous function

for which φ(η) > η for all real η 6= 0 holds. For such function, it is shown that the

following stochastic programming problem, which is convex, has an optimal value,

and such value is a proper coherent measure of risk:

ρ(X) = min
η∈<

η + φ(X − η) (6.4)

Any coherent risk measures which admit representation (6.4) can be included in

mathematical programming models in the form of objective function or as a constraint

[41]. An instance of such risk measures widely used in stochastic optimization models

is the Conditional Value-at-Risk (CVaR) [61, 62]:

CVaRα(X) = min
η∈R

η + (1− α)−1E(X − η)+, α ∈ [0, 1], (6.5)

where X+ = max{0, X}. Conditional Value-at-Risk with confidence level α is

denoted by CVaRα(X), and gives the average loss beyond the VaRα(X) level:

www.manaraa.com

95

CVaRα(X) = E[X | X ≥ VaRα(X)]. (6.6)

It is noteworthy that equation 6.6 only holds in certain special cases, such as

when the loss function X is continuous. Interested readers are referred to [62] for

more details on CVaR for loss functions with general distributions.

Of special interest to us in this chapter is the case when the loss function X is

discrete and is defined by a scenario set N , where the probability of each scenario

occuring is denoted by ps:

¶{X = Xs} = ps.

With a discrete loss function, the optimization problem in 6.5 transforms into a

stochastic programming problem of the form:

min η + (1− α)−1
∑

s∈N

psts

s. t. ts ≥ Xs − η, s ∈ N

ts ≥ 0, s ∈ N ,

(6.7)

where ts is an auxiliary variable associated with scenario s ∈ N that guarantees

the equivalence of two objective functions.

Through the rest of this chapter, and in the numerical experiments, CVaR is

used as the risk measure denoted by ρ. The general approach introduced here is

applicable to a broad class of coherent risk measures of the form (6.4).

www.manaraa.com

96

6.3 Risk-averse maximum clique problems

In this section we first provide the descriptive definition of minimum-risk maxi-

mum clique problem (6.1), and then explain a special case of the general case, namely,

the isolated risk exposure and the neighbor-dependent risk exposure, and ultimately

present the mathematical formulation for the risk-averse maximum clique problems

with isolated risk exposures.

Denote by R(S) the risk of selecting subgraph G[S] of a given graph G:

R(S) = min

{
ρ
(
XG(S;w)

) ∣∣∣∣
∑

i∈S

wi = 1; wi ≥ 0 ∀ i ∈ S
}
, (6.8)

where ρ(X) represents a (coherent) measure of risk, and X = XG(S;w) denotes

the loss function defined over a subset S of nodes in G, which also is a function of the

weights w of nodes in S. An explicit example for this is (6.1), with a loss function

that has a weighted-sum form:

XG(S;w) =
∑

i∈S

wiXi.

A broad set of mathematical problems can be defined by focusing our attention

to subgraphs in G with a prescribed property Q, all of which can be represented in

the form:

min
{
R(S)

∣∣ S[G] ∈ QG
}
. (6.9)

Examples for QG can be the set of all independent sets in G:

www.manaraa.com

97

QG = {S ⊆ V (G) | ∀i, j ∈ S : (i, j) /∈ E(G)},

or the set of all the paths contained in graph G between nodes s and t:

QG = {S ⊆ V (G) | S = {s ≡ i0, i1, . . . , in−1, in ≡ t}; (ik−1, ik) ∈ E(G), 1 ≤ k ≤ n}.

When expanded, (6.9) can be written as:

min
S⊆V (G), w

ρ
(
XG(S;w)

)

s. t.
∑

i∈S

wi = 1

wi ≥ 0, i ∈ V

S[G] ∈ QG.

(6.10)

In the current chapter, we are mainly concerned with the set of complete sub-

graphs, or cliques, in G, as defined in (6.2). Under such case, (6.10) will depict the

general formulation of the risk-averse maximum clique problem.

Special cases of the loss function XG(S;w) in (6.10) include situations where the

risk exposure of node i depends on both its own loss profile Xi as well as losses of

its neighbor nodes. The overal risk of a subset S is then a function of the risk of

individual nodes and its adjacent nodes. This special case can describe many real-life

applications, such as the ones observed in financial contexts considering inter-bank

loans, which heavily exposes counterparties. However, here we only consider the cases

when the risk exposures of individual nodes are isolated, and unaffected by the risk

www.manaraa.com

98

profile of their neighbors. In other words, stochastic factors of nodes do not impact

the risk at their neighbors.

In the next section, we will proved the mixed integer programming formulation

of the risk averse maximum clique problem with isolated stochastic effects. For the

purpose of correctness, we will assume the risk measure ρ to be selected as the Con-

ditional Value-at-Risk with the confidence level α, ρ(X) = CV aRα(X). Further, we

assume that Xi values, the losses associated with node i ∈ V , have a discrete joint

distribution, depicting as a 2-dimensional scenario matrix N , where Xis represents a

stochastic factor Xi under scenario s ∈ N .

6.3.1 Risk-averse maximum clique problem with isolated risk exposures

According to the discussion above, the loss function XG(S;w) corresponding to

isolated risk exposures is defined simply as a weighted sum of losses Xi among selected

nodes i ∈ S:

XG(S;w) =
∑

i∈S

wiXi. (6.11)

By introducing binary decision variables xi, i ∈ V , such that

xi =

1, i ∈ S,

0, i /∈ S,

where S is the desired subgraph, the risk-averse maximum clique problem with isolated

risk exposures can be formulated as a mixed integer programming problem of form

www.manaraa.com

99

min ρ
(∑

i∈V

wi xiXi

)
(6.12a)

s. t.
∑

i∈V

wi = 1 (6.12b)

wi ≤ xi, ∀i ∈ V (6.12c)

xi + xj ≤ 1, ∀(i, j) ∈ E (6.12d)

xi ∈ {0, 1}, wi ≥ 0, ∀i ∈ V. (6.12e)

Constraint (6.12c) ensures that weights wi can be non-zero only for the vertices i

that are included in the solution S, while constraint (6.12d) maintains that the set

of selected nodes forms a complete subgraph, or a clique. Observe that due to the

presence of constraint (6.12c) the nonlinearity in the objective function (6.12a) at-

tributed to the products wixi can be eliminated by replacing wixi with just wi, so

that the objective of (6.12) takes the form

ρ

(∑

i∈V

wiXi

)
.

When the joint distribution of stochastic factors Xi, i ∈ V , is given by scenario set

{Xis}s∈N , and risk measure ρ is chosen as CVaRα, the risk-averse maximum clique

problem (6.12) reduces to the following 0–1 mixed integer stochastic programming

www.manaraa.com

100

problem

min η +
1

1− α
∑

s∈N

psts (6.13a)

s. t.
∑

i∈V

wi = 1 (6.13b)

wi ≤ xi, ∀ i ∈ V (6.13c)

xi + xj ≤ 1, ∀ (i, j) ∈ E (6.13d)

ts ≥
∑

i∈V

wiXis − η, ∀ s ∈ N (6.13e)

xi ∈ {0, 1}, wi ≥ 0, ∀ i ∈ V ; ts ≥ 0 ∀s ∈ N , (6.13f)

where ps is the probability of scenario s ∈ N , i.e.

¶
{⋂

i∈V

Xi = Xis

}
= ps, s ∈ N ,

and, naturally, one has
∑

s∈N ps = 1.

Finally, we show that the adopted definition (6.8) of risk R(S) for subgraph S

and the chosen loss functions XG(S;w) of form (6.11) is consistent with the sub-

additivity property of coherent risk measures. Namely, we demonstrate that the

following is true.

Proposition 6.3.1. Consider definition (6.8) of risk for subset S of vertices in graph

G = (V,E), where each vertex i ∈ V is associated with a random element Xi. If risk

measure ρ in (6.8) is coherent, and the loss function associated with selecting S ⊆ V

is given by (6.11), then risk R satisfies

R(S ′) ≤ R(S) for all S ′ ⊇ S. (6.14)

www.manaraa.com

101

Corollary 6.3.2. Proposition (6.3.1) implies that an optimal solution of risk-averse

maximum clique problem (6.12) represents a maximal clique of the underlying graph

G.

6.4 A combinatorial approach to solve the maximum clique problem

with isolated risk exposures

As was noted in corollary (6.3.2), the optimal solution of the risk-averse max-

imum clique problem is a maximal clique in the underlying graph representing the

network. In this section we propose and explain a combinatorial approach to solve

the risk-averse MCP. For the sake of brevity, we refer the readers to section 6.3 for

preliminary definitions.

The proposed method, hereafter referred to as RAMCQ, is based on general

branch-and-bound method for solving the maximum clique problem. For a graph

G(V,E), RAMCQ tries to find all the maximal cliques contained in G, until one is

found that is guaranteed to have the smallest risk. RAMCQ maintains 2 sets for each

node of the branch and bound tree. The first set, denoted by Q, is a partial solution

to the problem and contains the node that construct a clique. In other words, all the

nodes in Q are pair-wise adjacent. The second set maintained by RAMCQ is the set

of candidate node, denoted by R, which contains the nodes that are adjacent to all

the nodes in Q, and can be used to extend Q:

R = {vi|(vi, vj) ∈ E,∀vj ∈ Q}

www.manaraa.com

102

The pseudo-code for RAMCQ is given in Fig. 6.1. The input to RAMCQ is

the risk-averse maximum clique problem formulation (denoted in the pseudo-code by

P), and the graph underlying it. RAMCQ is initialized with Q = ∅ and R = V

for the root node. Hereafter, to avoid confusion, the nodes in the sets Q and R are

referred to as elements, to distinguish them from the nodes of the branch and bound

tree. At each step of RAMCQ, it is determined, as explained later, whether the

node is promising or not. If the node is deemed promising, an element v ∈ R of the

respective node in BnB tree is selected and branched on. The next subproblem will

have Q′ = Q ∪ {v} and R′ = R ∩ Γ(v) as its partial solution and candidate set. If

a node of the branch and bound tree is deemed non-promising, RAMCQ backtracks

from the current node of the BnB tree to its parent node, and then tries to branch

on another element in the candid set. Backtracking also occurs if all the elements in

the candid set of a particular node of the BnB tree are branched on.

RAMCQ uses a relaxation of the risk-averse maximum clique problem to calcu-

late a lower bound on the value of the optimal risk of a BnB tree node. Specifically,

we relax constrains 6.13d and 6.13f, and the resulting mathematical formulation, as

is shown at (6.15), is solved to obtain an overestimation of the minimum risk the

current subproblem can lead to.

www.manaraa.com

103

LBrel = min η +
1

1− α
∑

s∈N

psts (6.15a)

s. t.
∑

i∈V

wi = 1 (6.15b)

ts ≥
∑

i∈V

wiXis − η, ∀ s ∈ N (6.15c)

In the pseudo-code, the input to the RAMCQ are the risk-averse problem (P),

and the graph representing it. The variables r∗ and Q∗ represent the value of the

optimal risk, and the risk-averse maximum clique contained in G. Also, r∗, Q∗ and

P are globally defined. The expand subprocess is called after the initialization. This

subprocess is where the BnB traversal occurs. Expand is a recursive function, and

recalls itself (line 16) until a leaf node in the BnB tree (a maximal clique) is reached

(line 17), at which point, the best solution of the problem will be updated in neces-

sary. Expand returns to the previous call (backtracks), if all the elements of R in a

particular node of the BnB are examined.

6.5 Numerical experiments

In order to evaluate the performance of RAMCQ, random instances of risk averse

maximum clique problem with isolated risk exposure are generated and solved by

RAMCQ and compared to CPLEX. It is a well-known fact that both the maximum

clique problem and the maximal clique enumeration problem are NP-hard. Conse-

quently, the risk-averse maximum clique problem is NP-hard as well. Generally, due

to the presence of stochastic factors, the largest size of graphs that can be solved for

www.manaraa.com

104

Figure 6.1: Pseudo-code for RAMCQ

the risk averse problem is smaller than graphs that can be solved for the maximum

clique problem.

The graphs generated are Erdos-Renyi graphs [23] G(V, p) where every edge is

independently formed with a prescribed probability p. Random scenario data corre-

sponding to each vertex i ∈ V were generated according to a uniform distribution

over an interval [−0.5, 0.5].

www.manaraa.com

105

RAMCQ was implemented in C++ and run on a windows machine with a 2.2

GHz CPU and 4 GBs of RAM. To solve the mixed integer program, CPLEX 12.2

with the C++ API was used and run on the same machine.

Table 6.1 summarizes the results obtained from solving graphs of different sizes

and densities under specified number of scenarios. For each row of the table, 20

instances were generated and solved by both methods, and the values reported are

averaged over all instances. A time limit of 1000 seconds was considered for both

methods, and an instances were terminated if an optimal solution was not found

within the time limit. In all instances, the confidence level of the Conditional Value-

at-Risk was chosen as α = 0.9. Columns of table 6.1 show |V |, number of nodes in

the graph, den, the expected density of the graph, N , number of scenarios for each

instance, ωr(G), size of the risk-averse maximum clique, and also the computational

time (in seconds) and obtained cost for RAMCQ and CPLEX. It was observed that

RAMCQ performs up to 10 times better than CPLEX for sparse graphs (density

25%). However, as the density of the graphs increases, the performance of RAMCQ

compared to CPELX declines. This domination persists for graphs up to density

70%, and at that point CPLEX starts to outperform RAMCQ. The deterioration

in RAMCQ’s performance can be explained by the fact that the mixed integer for-

mulation, solved by CPLEX, contains a constraint for each non-edge in the graph,

which leads to the problem having more constrains for sparser graphs. However, as

the density of the graph increases, the relative number of constrains decreases, and

so does the difficulty of the mixed integer problem. It is interesting to note that for

www.manaraa.com

106

problems with equal density and |N |, the expected risk of the problem decreases as

the number of nodes in the graph increases.

www.manaraa.com

107

Table 6.1: Average optimal clique sizes and computation times in

seconds obtained by RAMCQ and CPLEX

|V | density |N | ωr(G) RAMCQ CPLEX12.2

50 0.25 100 4.455 0.174 0.818
75 0.25 100 4.556 0.514 6.639
100 0.25 100 4.8 0.913 16.883
150 0.25 100 5.1 2.883 76.351
200 0.25 100 5 7.672 345.13

50 0.5 100 6.333 0.721 1.558
75 0.5 100 6.333 3.117 12.053
100 0.5 100 7 7.638 30.411
150 0.5 100 8.333 55.201 284.227
200 0.5 100 - - -

50 0.55 100 7.667 1.015 3.211
75 0.55 100 7.333 5.058 13.198
100 0.55 100 8.667 17.391 42.105
150 0.55 100 9.667 116.082 418.73
200 0.55 100 - - -

50 0.6 100 7 1.97 3.849
75 0.6 100 8 9.646 17.689
100 0.6 100 9.333 39.943 91.271
150 0.6 100 10.667 190.472 404.66
200 0.6 100 - - -

50 0.65 100 8.2 2.597 3.803
75 0.65 100 9.2 13.528 16.123
100 0.65 100 10.2 62.467 73.594
150 0.65 100 10.75 407.933 687.985
200 0.65 100 - - -

50 0.7 100 10 3.662 4.898
75 0.7 100 10 31.474 23.364
100 0.7 100 13 171.232 148.066
150 0.7 100 14 503.358 604.862
200 0.7 100 - - -

www.manaraa.com

108

CHAPTER 7
CONCLUSIONS

In chapter 2, randomized multidimensional assignment problems that correspond

to hypergraph matching problems were studied. Two different methods were pro-

vided to obtain guaranteed high-quality solutions for MAPs with linear sum or linear

bottleneck cost functions, specifically designed for instances with small dimensional-

ity or small cardinality. The computational results demonstrated that the proposed

methods provide a tight upper bound on the value of the optimal cost for MAPs in

randomized problems. The heuristic provided for problems with fixed cardinality can

provide high-quality solutions to problems with large dimensionality in a relatively

short time. The limiting factor for the heuristic method is the memory consumption.

The structure of the proposed methods makes them suitable for parallel computing.

As an extension, the performance of the proposed heuristic in a parallel system can

be studied.

In chapter 3, bitset-based data structures were proposed for the algorithm pre-

sented by Grunert et al [30] for the problem of enumerating all k-cliques in a k-partite

graph. Utilization of bitsets and the associated bit parallelism enables one to reduce

the computational cost of branching and backtracking in the branch-and-bound proce-

dure. Numerical experiments on small- and large-scale randomly generated k-partite

graphs show that the proposed approach allows for achieving substantial computa-

tional improvements over the original method of [30].

The multi-dimensional assignment problem (MAP) were studied in chapter 4.

www.manaraa.com

109

We proposed two heuristic methods to obtain approximate solutions for MAP, and

showed how these solutions can be used in an exact method, such as a branch and

bound method.

Some of the recent maximum clique branch and bound algorithms were reviewed

in chapter 5. A new coloring method was proposed based on the unit propagation

technique which is widely used in MaxSAT solvers. The new coloring method will

work on top of graph coloring heuristics to obtain a smaller color number for the

nodes. In the new coloring method, the colors assigned to the nodes is not necessarily

the same as the index of the color class they are assigned to in the graph coloring

heuristics. The new coloring method was used in a new algorithm for the maximum

clique problem and the numerical results were provided.

In chapter 6, we studied the minimum-risk maximum clique problem, i.e. a

risk-averse maximum clique problem on stochastic graphs. A new graph-theoretic

method was proposed for this problem and used to solve randomly generated Erdos-

Renyi with random factors associated to their nodes. Comparisons were made with

CPLEX, and it was shown that the new method is very competitive.

www.manaraa.com

110

REFERENCES

[1] S. Abdullah, E. K. Burke, and B. Mccollum. Using a randomised iterative im-
provement algorithm with composite neigjhbourhood structures for university
course timetabling. In in The Proceedings of the 6th Metaheuristic International
Conference [MIC05, pages 22–26. Book, 2005.

[2] YP Aneja, R Chandrasekaran, and KPK Nair. Maximizing residual flow under
an arc destruction. Networks, 38(4):194–198, 2001.

[3] K. M. Anstreicher. Recent advances in the solution of quadratic assignment
problems. Mathematical Programming, 97(1–2):27–42, 2003.

[4] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent
measures of risk. Mathematical finance, 9(3):203–228, 1999.

[5] Alper Atamtürk and Muhong Zhang. Two-stage robust network flow and design
under demand uncertainty. Operations Research, 55(4):662–673, 2007.

[6] E. Balas and P. R. Randweer. Traffic assignment in communications satellites.
Operations Research Letters, 2(4):141–147, 1983.

[7] Egon Balas and Chang Sung Yu. Finding a maximum clique in an arbitrary
graph. SIAM Journal on Computing, 15(4):1054–1068, 1986.

[8] H. Bekker, E. P. Braad, and Boris Goldengorin. Using bipartite and multidi-
mensional matching to select the roots of a system of polynomial equations. In
ICCSA (4), pages 397–406, 2005.

[9] Vladimir L Boginski, Clayton W Commander, and Timofey Turko. Polynomial-
time identification of robust network flows under uncertain arc failures. Opti-
mization Letters, 3(3):461–473, 2009.

[10] Immanuel M. Bomze, Marco Budinich, Panos M. Pardalos, and Marcello Pelillo.
The maximum clique problem. In Handbook of Combinatorial Optimization,
pages 1–74. Kluwer Academic Publishers, 1999.

[11] Immanuel M. Bomze, Marco Budinich, Marcello Pelillo, and Claudio Rossi. An-
nealed replication: a new heuristic for the maximum clique problem. Discrete
Appl. Math., 121(1-3):27–49, September 2002.

[12] W. L. Brogan. Algorithm for ranked assignments with applications to multiobject
tracking. Journal of Guidance, Control, and Dynamics, 12(3):357–364, 1989.

[13] R. E. Burkard. Quadratic assignment problems. European Journal of Operational
Research, 15(3):283–289, 1984.

www.manaraa.com

111

[14] R. E. Burkard. Time-slot assignment for tdma systems. Computing, 35(2):99–
112, 1985.

[15] R. E. Burkard. Selected topics on assignment problems. Discrete Applied Math-
ematics, 123(1–3):257–302, 2002.

[16] R. E. Burkard and E. Çela. Linear assignment problems and extensions. In
D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization,
Supplement Volume A, pages 75–149. Kluwer Academic Publishers, Dordrecht,
1999.

[17] P. Carraresi and G. Gallo. A multi-level bottleneck assignment approach to
the bus drivers’ rostering problem. European Journal of Operational Research,
16(2):163–173, 1984.

[18] MW Carter and G Laporte. Recent developments in practical course timetabling.
In Burke, E and Carter, M, editor, Practice And Theory Of Automated
Timetabling Ii, volume 1408 of Lecture Notes In Computer Science, pages
3–19, Heidelberger Platz 3, D-14197 Berlin, Germany, 1998. Springer-Verlag
Berlin. 2nd International Conference on the Practice and Theory of Automated
Timetabling (Patat 97), Toronto, Canada, Aug 20-22, 1997.

[19] L Cavique, C Rego, and Isabel Themido. A scatter search algorithm for the
maximum clique problem. Instituto Politecnico de, 48:0–16, 2001.

[20] D. Coppersmith and G. Sorkin. Constructive bounds and exact expectations for
the random assignment problem. Random Structures and Algorithms, 15(2):113–
144, 1999.

[21] W. E. Donath. Algorithm and average-value bounds for assignment problems.
IBM Journal of Research and Development, pages 380–386, 1969.

[22] A. Dutta and P. Tsiotras. A greedy random adaptive search procedure for opti-
mal scheduling of p2p satellite refueling. In AAS/AIAA Space Flight Mechanics
Meeting, pages 07–150, 2007.

[23] Paul Erdös and A Rényi. On the evolution of random graphs. Publ. Math. Inst.
Hungar. Acad. Sci, 5:17–61, 1960.

[24] Serge Fenet and Christine Solnon. Searching for maximum cliques with ant colony
optimization. In Proceedings of the 2003 international conference on Applications
of evolutionary computing, EvoWorkshops’03, pages 236–245, Berlin, Heidelberg,
2003. Springer-Verlag.

[25] R. Fulkerson, I. Glickberg, and O. Gross. A production line assignment problem.
Technical Report RM-1102, The RAND Corporation, Sta. Monica, CA, 1953.

www.manaraa.com

112

[26] Gregory D Glockner and George L Nemhauser. A dynamic network flow problem
with uncertain arc capacities: formulation and problem structure. Operations
Research, 48(2):233–242, 2000.

[27] S. Grabowski and K. Fredriksson. Bit-parallel string matching under hamming
distance in O(ndm/we)O(ndm/we) worst case time. Information Processing
Letters, 105(5):182–187, 2008.

[28] M. Grötschel, L. Lovász, and A. Schrijver. Relaxations of vertex packing. Journal
of Combinatorial Theory, Series B, 40(3):330–343, 1986.

[29] D. Grundel, P. Krokhmal, C. Oliveira, and P. Pardalos. On the number of local
minima in the multidimensional assignment problem. Journal of Combinatorial
Optimization, 13(1):1–18, 2007.

[30] T. Grünert, S. Irnich, H. Zimmermann, M. Schneider, and B. Wulfhorst. Finding
all k-cliques in k-partite graphs, an application in textile engineering. Computers
& Operations Research, 29(1):13–31, January 2002.

[31] H. Hyyrö. Bit-parallel approximate string matching algorithms with transposi-
tion. Journal of Discrete Algorithms, 3(2–4):215–229, 2005.

[32] H. Hyyrö and G. Navarro. Bit-parallel witnesses and their applications to ap-
proximate string matching. Algorithmica, 41(3):203–231, 2004.

[33] David S. Johnson. Approximation algorithms for combinatorial problems. In
Proceedings of the fifth annual ACM symposium on Theory of computing, STOC
’73, pages 38–49, New York, NY, USA, 1973. ACM.

[34] R. M. Karp. An upper bound on the expected cost of an optimal assignment.
In D. S. Johnson, T. Nishizeki, A. Nozaki, and H. S. Wilf, editors, Discrete
Algorithms and Complexity, volume 15 of Perspectives in Computing, pages 1–4.
Academic Press, Boston, 1987.

[35] Kengo Katayama, Akihiro Hamamoto, and Hiroyuki Narihisa. Solving the max-
imum clique problem by k-opt local search. In Proceedings of the 2004 ACM
symposium on Applied computing, SAC ’04, pages 1021–1025, New York, NY,
USA, 2004. ACM.

[36] Janez Konc and Dušanka Janezic. An improved branch and bound algorithm for
the maximum clique problem. proteins, 4:5, 2007.

[37] T. C. Koopmans and M. J. Beckmann. Assignment problems and the location
of economic activities. Econometrica, 25(1):52–76, 1957.

[38] P. Krokhmal, D. Grundel, and P. Pardalos. Asymptotic behavior of the expected
optimal value of the multidimensional assignment problem. Mathematical Pro-
gramming, 109(2–3):525–551, 2007.

www.manaraa.com

113

[39] P. A. Krokhmal and P. M. Pardalos. Limiting optimal values and convergence
rates in some combinatorial optimization problems on hypergraph matchings.
Submitted for publication, 2010.

[40] P. A. Krokhmal and P. M. Pardalos. Limiting optimal values and convergence
rates in some combinatorial optimization problems on hypergraph matchings.
Submitted for publication, 2011.

[41] PAVLO A Krokhmal. Higher moment coherent risk measures. 2007.

[42] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2(1–2):83–87, 1955.

[43] J. M. Kurtzberg. On approximation methods for the assignment problem. Jour-
nal of the ACM, 9(4):419–439, 1962.

[44] A. J. Lazarus. Certain expected values in the random assignment problem. Tech-
nical report, Math. & Computer Science Dept., Univ of California, Riverside,
1990.

[45] Charles E. Leiserson, Harald Prokop, and Keith H. Randall. Using de
Bruijn sequences to index a 1 in a computer word. Working paper, 1998,
http://supertech.csail.mit.edu/papers/debruijn.ps.

[46] Chu Min Li and Zhe Quan. An efficient branch-and-bound algorithm based on
maxsat for the maximum clique problem. In AAAI, 2010.

[47] Q Liu and YPP Chen. High functional coherence in k-partite protein cliques of
protein interaction networks. Bioinformatics and Biomedicine, 2009.

[48] E. A. Loiola, N. M. Maia de Abreu, P. O. Boaventura-Netto, P. M. Hahn, and
T. Querido. A survey for the quadratic assignment problem. European Journal
of Operational Research, 176(2):657–690, 2007.

[49] M. Mirghorbani, P. Krokhmal, and E. L. Pasiliao. Computational studies of
randomized multidimensional assignment problems. In Alexey Sorokin, My T.
Thai, and Panos M. Pardalos, editors, Dynamics of Information Systems, page
in press. Springer.

[50] G. L. Nemhauser and L. E. Trotter. Properties of vertex packing and in-
dependence system polyhedra. Mathematical Programming, 6:48–61, 1974.
10.1007/BF01580222.

[51] G. L. Nemhauser and L. E. Trotter. Vertex packings: Structural properties and
algorithms. Mathematical Programming, 8:232–248, 1975. 10.1007/BF01580444.

www.manaraa.com

114

[52] B. Olin. Asymptotic properties of the random assignment problem. PhD thesis,
Department of Mathematics, Royal Institute of Technology, Stockholm, Sweden,
1992.

[53] Patric R. J. Österg̊ard. A fast algorithm for the maximum clique problem.
Discrete Appl. Math., 120(1-3):197–207, August 2002.

[54] P. M. Pardalos and H. Wolkowicz, editors. Quadratic Assignment and Related
Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society, Providence, RI, 1994.

[55] D. W. Pentico. Assignment problems: A golden anniversary survey. European
Journal of Operational Research, 176(2):774–793, 2007.

[56] M Peters. CLICK: Clustering categorical data using k-partite maximal cliques.
IEEE International Conference on Data Engineering, 2005.

[57] W. Pierskalla. The multidimensional assignment problem. Operations Research,
16(2):422–431, 1968.

[58] A. B. Poore. Multidimensional assignment formulation of data association prob-
lems arising from multitarget and multisensor tracking. Computation Optimiza-
tion and Applications, 3(1):27–54, 1994.

[59] Wayne Pullan and Holger H. Hoos. Dynamic local search for the maximum clique
problem. Journal of Artificial Intelligence Research, 25:159–185, 2006.

[60] JF Pusztaszeri, PE Rensing, and TM Liebling. Tracking elementary parti-
cles near their primary vertex: A combinatorial approach. Journal Of Global
Optimization, 9(1):41–64, JUL 1996. 3rd Workshop on Global Optimization,
SZEGED, HUNGARY, DEC, 1995.

[61] R Tyrrell Rockafellar and Stanislav Uryasev. Optimization of conditional value-
at-risk. Journal of risk, 2:21–42, 2000.

[62] R Tyrrell Rockafellar and Stanislav Uryasev. Conditional value-at-risk for general
loss distributions. Journal of Banking & Finance, 26(7):1443–1471, 2002.

[63] M. Rysz, P. Krokhmal, and E. L. Pasiliao. Minimum risk maximum clique prob-
lem. In Alexey Sorokin and Panos M. Pardalos, editors, Dynamics of Information
Systems, page in press. Springer.

[64] T. Sahni and T. Gonzales. P-complete approximation problems. Journal of the
Association for Computing Machinery, 23(3):555–565, 1976.

[65] Pablo San Segundo, Diego Rodŕıguez-Losada, and Agust́ın Jiminez. An exact
bit-parallel algorithm for the maximum clique problem. Computers & Operations
Research, 38(2):571–581, February 2011.

www.manaraa.com

115

[66] Pablo San Segundo, Cristbal Tapia, Julio Puente, and Diego Rodrguez-Losada.
A new exact bit-parallel algorithm for sat. In ICTAI (2)’08, pages 59–65, 2008.

[67] Alexey Sorokin, Vladimir Boginski, Artyom Nahapetyan, and Panos M Parda-
los. Computational risk management techniques for fixed charge network flow
problems with uncertain arc failures. Journal of Combinatorial Optimization,
25(1):99–122, 2013.

[68] L. Steinberg. The backboard wiring problem: a placement algorithm. SIAM
Review, 3(1):37–50, 1961.

[69] Etsuji Tomita and Tomokazu Seki. An efficient branch-and-bound algorithm for
finding a maximum clique. In DMTCS’03: Proceedings of the 4th international
conference on Discrete mathematics and theoretical computer science, pages 278–
289, Berlin, Heidelberg, 2003. Springer-Verlag.

[70] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi, and Mitsuo
Wakatsuki. A simple and faster branch-and-bound algorithm for finding a maxi-
mum clique. In Proceedings of the 4th International Workshop WALCOM 2010,
volume 5942 of Lecture Notes in Computer Science, pages 191–203. Springer,
2010.

[71] Satish V Ukkusuri, Tom V Mathew, and S Travis Waller. Robust transportation
network design under demand uncertainty. Computer-Aided Civil and Infras-
tructure Engineering, 22(1):6–18, 2007.

[72] TL Urban and RA Russell. Scheduling Sports Competitions On Multiple Venues.
European Journal Of Operational Research, 148(2):302–311, JUL 16 2003.

[73] Bram Verweij, Shabbir Ahmed, Anton J Kleywegt, George Nemhauser, and
Alexander Shapiro. The sample average approximation method applied to
stochastic routing problems: a computational study. Computational Optimiza-
tion and Applications, 24(2-3):289–333, 2003.

[74] D. W. Walkup. On the expected value of a random assignment problem. SIAM
Journal on Computation, 8(3):440–442, 1979.

	Graph-theoretic studies of combinatorial optimization problems
	Recommended Citation

	tmp.1407991999.pdf.F29mU

